NEWS AND VIEWS

Ultralow-power polymer electro–optic integrated modulators

Amirmahdi Honardoost, Reza Safian, Min Teng and Leimeng Zhuang

+ Author Affiliations

 Corresponding author: Reza Safian, reza.safian@imec-int.com

PDF

Turn off MathJax



[1]
Subbaraman H, Xu X C, Hosseini A, et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express, 2015, 23, 2487 doi: 10.1364/OE.23.002487
[2]
Bowers J E, Komljenovic T, Davenport M, et al. Recent advances in silicon photonic integrated circuits. Proc SPIE, 2016, 9774, 977402 doi: 10.1117/12.2221943
[3]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[4]
Fang Y R, Sun M T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci Appl, 2015, 4, e294 doi: 10.1038/lsa.2015.67
[5]
Krasavin A V, Zayats A V. Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv Opt Mater, 2015, 3, 1662 doi: 10.1002/adom.v3.12
[6]
Kinsey N, Ferrera M, Shalaev V M. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials Invited. J Opt Soc Am B, 2015, 32, 121 doi: 10.1364/JOSAB.32.000121
[7]
Vlasov Y A, O’Boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438, 65 doi: 10.1038/nature04210
[8]
Heni W, Kutuvantavida Y, Haffner C, et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 2017, 4, 1576 doi: 10.1021/acsphotonics.7b00224
[9]
Reed G T, Knights A P. Silicon photonics: an introduction. Wiley, 2004, 97
[10]
Baba T, Akiyama S, Imai M, et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express, 2013, 21(10), 11869 doi: 10.1364/OE.21.011869
[11]
Yang Y, Fang Q, Yu M B, et al. High-efficiency Si optical modulator using Cu travelling wave electrode. Opt Express, 2014, 22(24), 29978 doi: 10.1364/OE.22.029978
[12]
Gutierrez A, Galan J V, Herrera J. High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications. Proc IEEE 9th Int Conf Group IV Photon, 2012, 57
[13]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiberoptic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6, 69 doi: 10.1109/2944.826874
[14]
Rao A, Fathpour S. Compact lithium niobate electrooptic modulators. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1364/OL.38.004931
[15]
Dalton L R, Günter P, Jazbinsek M, et al. Organic electro–optics and photonics: molecules, polymers, and crystals. Cambridge: Cambridge University Press, 2015
[16]
Koos C, Leuthold J, Freude W, et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 2016, 34, 256 doi: 10.1109/JLT.2015.2499763
[17]
Haffner C, Heni W, Fedoryshyn Y, et al. Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale. Proc IEEE, 2016, 104, 2362 doi: 10.1109/JPROC.2016.2547990
[18]
Zhang X Y, Chung C J, Hosseini A, et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 2016, 34, 2941 doi: 10.1109/JLT.2015.2471853
[19]
Yan H, Xu X, Chung C J, et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 2016, 41, 5466 doi: 10.1364/OL.41.005466
[20]
Koeber S, Palmer R, Lauermann M, et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light: Sci Appl, 2015, 4, e255 doi: 10.1038/lsa.2015.28
[21]
Wolf S, Heiner A, Hartmann W, et al. Silicon-organic hybrid (SOH) Mach- Zehnder Modulators for 100 Gbit/s on-off keying. Sci Rep, 2018, 8, 2598 doi: 10.1038/s41598-017-19061-8
[22]
www.imec-int.com
[23]
www.optics.arizona.edu
[24]
Liu J, Xu G, Kityk I, et al. Recent advances in polymer electro-optic modulators. RSC Adv, 2015, 5, 15784 doi: 10.1039/c4ra13250e
Fig. 1.  (a) Integrated silicon photonics[22]. (b) Size comparison for integrated electro-optic polymer modulators[23]. (c) CLD-1, one of the widely used polymers with large electro-optic coefficient[24].

[1]
Subbaraman H, Xu X C, Hosseini A, et al. Recent advances in silicon-based passive and active optical interconnects. Opt Express, 2015, 23, 2487 doi: 10.1364/OE.23.002487
[2]
Bowers J E, Komljenovic T, Davenport M, et al. Recent advances in silicon photonic integrated circuits. Proc SPIE, 2016, 9774, 977402 doi: 10.1117/12.2221943
[3]
Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003 doi: 10.1088/2040-8978/18/7/073003
[4]
Fang Y R, Sun M T. Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Sci Appl, 2015, 4, e294 doi: 10.1038/lsa.2015.67
[5]
Krasavin A V, Zayats A V. Active nanophotonic circuitry based on dielectric-loaded plasmonic waveguides. Adv Opt Mater, 2015, 3, 1662 doi: 10.1002/adom.v3.12
[6]
Kinsey N, Ferrera M, Shalaev V M. Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials Invited. J Opt Soc Am B, 2015, 32, 121 doi: 10.1364/JOSAB.32.000121
[7]
Vlasov Y A, O’Boyle M, Hamann H F, et al. Active control of slow light on a chip with photonic crystal waveguides. Nature, 2005, 438, 65 doi: 10.1038/nature04210
[8]
Heni W, Kutuvantavida Y, Haffner C, et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 2017, 4, 1576 doi: 10.1021/acsphotonics.7b00224
[9]
Reed G T, Knights A P. Silicon photonics: an introduction. Wiley, 2004, 97
[10]
Baba T, Akiyama S, Imai M, et al. 50-Gb/s ring-resonator-based silicon modulator. Opt Express, 2013, 21(10), 11869 doi: 10.1364/OE.21.011869
[11]
Yang Y, Fang Q, Yu M B, et al. High-efficiency Si optical modulator using Cu travelling wave electrode. Opt Express, 2014, 22(24), 29978 doi: 10.1364/OE.22.029978
[12]
Gutierrez A, Galan J V, Herrera J. High linear ring-assisted MZI electro-optic silicon modulators suitable for radio-over-fiber applications. Proc IEEE 9th Int Conf Group IV Photon, 2012, 57
[13]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiberoptic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6, 69 doi: 10.1109/2944.826874
[14]
Rao A, Fathpour S. Compact lithium niobate electrooptic modulators. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1364/OL.38.004931
[15]
Dalton L R, Günter P, Jazbinsek M, et al. Organic electro–optics and photonics: molecules, polymers, and crystals. Cambridge: Cambridge University Press, 2015
[16]
Koos C, Leuthold J, Freude W, et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 2016, 34, 256 doi: 10.1109/JLT.2015.2499763
[17]
Haffner C, Heni W, Fedoryshyn Y, et al. Plasmonic organic hybrid modulators-scaling highest speed photonics to the microscale. Proc IEEE, 2016, 104, 2362 doi: 10.1109/JPROC.2016.2547990
[18]
Zhang X Y, Chung C J, Hosseini A, et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 2016, 34, 2941 doi: 10.1109/JLT.2015.2471853
[19]
Yan H, Xu X, Chung C J, et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 2016, 41, 5466 doi: 10.1364/OL.41.005466
[20]
Koeber S, Palmer R, Lauermann M, et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light: Sci Appl, 2015, 4, e255 doi: 10.1038/lsa.2015.28
[21]
Wolf S, Heiner A, Hartmann W, et al. Silicon-organic hybrid (SOH) Mach- Zehnder Modulators for 100 Gbit/s on-off keying. Sci Rep, 2018, 8, 2598 doi: 10.1038/s41598-017-19061-8
[22]
www.imec-int.com
[23]
www.optics.arizona.edu
[24]
Liu J, Xu G, Kityk I, et al. Recent advances in polymer electro-optic modulators. RSC Adv, 2015, 5, 15784 doi: 10.1039/c4ra13250e
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3692 Times PDF downloads: 57 Times Cited by: 0 Times

    History

    Received: Revised: Online: Accepted Manuscript: 31 May 2019Uncorrected proof: 10 June 2019Published: 05 July 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Amirmahdi Honardoost, Reza Safian, Min Teng, Leimeng Zhuang. Ultralow-power polymer electro–optic integrated modulators[J]. Journal of Semiconductors, 2019, 40(7): 070401. doi: 10.1088/1674-4926/40/7/070401 A Honardoost, R Safian, M Teng, L M Zhuang, Ultralow-power polymer electro–optic integrated modulators[J]. J. Semicond., 2019, 40(7): 070401. doi: 10.1088/1674-4926/40/7/070401.Export: BibTex EndNote
      Citation:
      Amirmahdi Honardoost, Reza Safian, Min Teng, Leimeng Zhuang. Ultralow-power polymer electro–optic integrated modulators[J]. Journal of Semiconductors, 2019, 40(7): 070401. doi: 10.1088/1674-4926/40/7/070401

      A Honardoost, R Safian, M Teng, L M Zhuang, Ultralow-power polymer electro–optic integrated modulators[J]. J. Semicond., 2019, 40(7): 070401. doi: 10.1088/1674-4926/40/7/070401.
      Export: BibTex EndNote

      Ultralow-power polymer electro–optic integrated modulators

      doi: 10.1088/1674-4926/40/7/070401
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return