REVIEWS

Perspectives on exfoliated two-dimensional spintronics

Xiaoxi Li1, 2, Baojuan Dong1, 2, , Xingdan Sun1, 2, Hanwen Wang1, 2, Teng Yang1, 2, Guoqiang Yu3, 4, and Zheng Vitto Han1, 2,

+ Author Affiliations

 Corresponding author: Baojuan Dong, dongbaojuan.1989@gmail.com; Guoqiang Yu, guoqiangyu@iphy.ac.cn; Zheng Vitto Han, vitto.han@gmail.com

PDF

Turn off MathJax

Abstract: Magnetic orderings, i.e., the spontaneous alignment of electron spins below a critical temperature, have been playing key roles in modern science and technologies for both the wide applications of magnetic recording for information storage and the vibrant potential of solid state electronic spin devices (also known as spintronics) for logic operations. In the past decades, thanks to the development of thin film technologies, magnetic thin films via sputtering or epitaxial growth have made the spintronic devices possible at the industrial scale. Yet thinner materials at lower costs with more versatile functionalities are highly desirable for advancing future spintronics. Recently, van der Waals magnetic materials, a family of magnets that can in principle be exfoliated down to the monolayer limit, seem to have brought tremendous opportunities: new generation van der Waals spintronic devices can be seamlessly assembled with possible applications such as optoelectronics, flexible electronics, and etc. Moreover, those exfoliated spintronic devices can potentially be compatible with the famed metal-oxide field effect transistor architectures, allowing the harness of spin performances through the knob of an electrostatic field.

Key words: van der Waals magnetic materialsspintronicstwo dimensional materials



[1]
Tedrow P M, Meservey R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys Rev B, 1973, 7, 318 doi: 10.1103/PhysRevB.7.318
[2]
Jullière M. Tunneling between ferromagnetic films. Phys Lett A, 1975, 54, 225 doi: 10.1016/0375-9601(75)90174-7
[3]
Johnson M, Silsbee R H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys Rev Lett, 1985, 55, 1790 doi: 10.1103/PhysRevLett.55.1790
[4]
Baibich M, Broto J M, Fert A, et al. Magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61, 2472 doi: 10.1103/PhysRevLett.61.2472
[5]
Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39, 4828 doi: 10.1103/physrevb.39.4828
[6]
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56, 665 doi: 10.1063/1.102730
[7]
Dieny B, Speriosu V S, Metin S, et al. Magnetotransport properties of magnetically soft spin-valve structures. J Appl Phys, 1991, 69, 4774 doi: 10.1063/1.348252
[8]
Moodera J S, Kinder L R, Wong T M, et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett, 1995, 74, 3273 doi: 10.1103/PhysRevLett.74.3273
[9]
Rashba E I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Soviet Phys Solid State, 1960, 2, 1109
[10]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[11]
Nicolas M, Marco G, Philippe S, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13, 246 doi: 10.1038/s41565-017-0035-5
[12]
Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105, 136805 doi: 10.1103/PhysRevLett.105.136805
[13]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[14]
Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13, 544 doi: 10.1038/s41565-018-0121-3
[15]
Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13, 554 doi: 10.1038/s41565-018-0186-z
[16]
Mermin N D, Wagner H. Absence of derromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[17]
Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9
[18]
Fei Z Y, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater, 2018, 17, 778 doi: 10.1038/s41563-018-0149-7
[19]
Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[20]
Zhong D, Seyler K L, Linpeng X Y, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv, 2017, 3, 5 doi: 10.1126/sciadv.1603113
[21]
Ghazaryan D, Greenaway M T, Wang Z, et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron, 2018, 1, 344 doi: 10.1038/s41928-018-0087-z
[22]
Samuelsen E J, Silberglitt R, Shirane G, et al. Spin waves in ferromagnetic CrBr3 studied by inelastic neutron scattering. Phys Rev B, 1971, 3, 157 doi: 10.1103/PhysRevB.3.157
[23]
Kim H H, Yang B W, Li S W, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. PNAS, 2019, 116(23), 11131 doi: 10.1073/pnas.1902100116
[24]
Cai X H, Song T C, Wilson N P, et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett, 2019, 19(6), 3993 doi: 10.1021/acs.nanolett.9b01317
[25]
Rehman Z U, Muhammad Z, Moses O A, et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines, 2018, 9, 292 doi: 10.3390/mi9060292
[26]
Long G, Zhang T, Cai X B, et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano, 2017, 11, 11330 doi: 10.1021/acsnano.7b05856
[27]
Kim K, Lim S Y, Lee J U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun, 2019, 10, 345 doi: 10.1038/s41467-018-08284-6
[28]
Bonilla M, Kolekar S, Ma Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[29]
Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PANS, 2018, 115, 8511 doi: 10.1073/pnas.1715465115
[30]
Niu J J, Yan B M, Ji Q Q, et al. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys Rev B, 2017, 96, 075402 doi: 10.1103/PhysRevB.96.075402
[31]
Zhang Y, Chu J W, Yin L, et al. Ultrathin magnetic 2D single-crystal CrSe. Adv Mater, 2019, 31, 1900056 doi: 10.1002/adma.v31.19
[32]
Chu J W, Zhang Y, Wen Y, et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett, 2019, 19, 2154 doi: 10.1021/acs.nanolett.9b00386
[33]
Nikolaos T, Csaba J, Mihaita P, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448, 571 doi: 10.1038/nature06037
[34]
Kamalakar M V, Groenveld C, Dankert A, et al. Long distance spin communication in chemical vapour deposited graphene. Nat Commun, 2015, 6, 6766 doi: 10.1038/ncomms7766
[35]
Wei P, Lee S, Lemaitre F, et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat Mater, 2016, 15, 711 doi: 10.1038/nmat4603
[36]
Wang W, Narayan A, Tang L, et al. Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett, 2015, 15, 5261 doi: 10.1021/acs.nanolett.5b01553
[37]
Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108, 196802 doi: 10.1103/PhysRevLett.108.196802
[38]
Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 2012, 7, 494 doi: 10.1038/nnano.2012.96
[39]
Stier A V, McCreary K M, Jonker B T, et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat Commun, 2016, 7, 10643 doi: 10.1038/ncomms10643
[40]
Roch J G, Froehlicher G, Leisgang N, et al. Spin-polarized electrons in monolayer MoS2. Nat Nanotechnol, 2019, 14, 432 doi: 10.1038/s41565-019-0397-y
[41]
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95, 226801 doi: 10.1103/PhysRevLett.95.226801
[42]
Young A F, Sanchez-Yamagishi J D, Hunt B, et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 2014, 505, 528 doi: 10.1038/nature12800
[43]
Andrea C, Svetlana K, Mario R, et al. Graphene spintronic devices with molecular nanomagnets. Nano Lett, 2011, 11, 2634 doi: 10.1021/nl2006142
[44]
Dillon J F, Kamimura H, Remeika J P, et al. Magneto-optical properties of ferromagnetic chromium trihalides. J Phys Chem Solids, 1966, 27, 1531 doi: 10.1016/0022-3697(66)90148-X
[45]
Li B, Xing T, Zhong M Z, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8, 1958 doi: 10.1038/s41467-017-02077-z
[46]
Ho J T, Litster J D. Magnetic equation of state of CrBr3 near critical point. Phys Rev Lett, 1969, 22, 603 doi: 10.1103/PhysRevLett.22.603
[47]
Okuda K, Kurosawa K, Saito S, et al. Magnetic properties of layered compound MnPS3. J Phys Soc Jpn, 1986, 55, 4456 doi: 10.1143/JPSJ.55.4456
[48]
Carteaux V, Brunet D, Ouvrard G, et al. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J Phys Condens Matter, 1995, 7, 69 doi: 10.1088/0953-8984/7/1/008
[49]
Ji H, Stokes R A, Alegria L D, et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J Appl Phys, 2013, 114, 114907 doi: 10.1063/1.4822092
[50]
Deiseroth H J, Aleksandrov K, Reiner C, et al. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur J Inorg Chem, 2006, 2006, 1561 doi: 10.1002/(ISSN)1099-0682
[51]
Chen B, Yang J, Wang H, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J Phys Soc Jpn, 2013, 82, 124711 doi: 10.7566/JPSJ.82.124711
[52]
Dillon J F, Olson C E. Magnetization resonance and optical properties of ferromagnet CrI3. J Appl Phys, 1965, 36, 1259 doi: 10.1063/1.1714194
[53]
Carteaux V, Moussa F, Spiesser M. 2D ising-like ferromagnetic behavior for the lamellar Cr2Si2Te6 compound: a neutron-scattering investigation. Europhys Lett, 1995, 29, 251 doi: 10.1209/0295-5075/29/3/011
[54]
Li X, Cao T, Niu Q, et al. Coupling the valley degree of freedom to antiferromagnetic order. Proc Natl Acad Sci USA, 2013, 110, 3738 doi: 10.1073/pnas.1219420110
[55]
Sachs B, Wehling T O, Novoselov K S, et al. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys Rev B, 2013, 88, 201402 doi: 10.1103/PhysRevB.88.201402
[56]
Kong T, Stolze K, Timmons E I, et al. VI3—a new layered ferromagnetic semiconductor. Adv. Mater, 2019, 31, 1808074 doi: 10.1002/adma.201808074
[57]
McGuire M A, Dixit H, Cooper V R, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 2015, 27, 612 doi: 10.1021/cm504242t
[58]
Sivadas N, Daniels M W, Swendsen R H, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 2015, 91, 235425 doi: 10.1103/PhysRevB.91.235425
[59]
Du K, Wang X, Liu Y, et al. Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 2106, 10, 1738 doi: 10.1021/acsnano.5b05927
[60]
May A F, Calder S, Cantoni C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3– xGeTe2. Phys Rev B, 2016, 93, 014411 doi: 10.1103/PhysRevB.93.014411
[61]
Lee S, Choi K Y, Lee S, et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. Appl Mater, 2016, 4, 086108 doi: 10.1063/1.4961211
[62]
Lin M, Zhuang H L, Yan J, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 2016, 4, 315 doi: 10.1039/C5TC03463A
[63]
Zhang W, Qu Q, Zhu P, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C, 2015, 3, 12457 doi: 10.1039/C5TC02840J
[64]
McGuire M A, Clark G, KC S, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys Rev Mater, 2017, 1, 014001 doi: 10.1103/PhysRevMaterials.1.014001
[65]
McGuire, M. A Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 2017, 7, 121 doi: 10.3390/cryst7050121
[66]
Williams T J, Aczel C C, Lumsden M D, et al. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Phys Rev B, 2015, 92, 144404 doi: 10.1103/PhysRevB.92.144404
[67]
Li X, Yang J. CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2, 7071 doi: 10.1039/C4TC01193G
[68]
Carteaux V, Ouvrard G, Grenier J C, et al. Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6. J Magn Magn Mater, 1991, 94, 127 doi: 10.1016/0304-8853(91)90121-p
[69]
Casto L D, Clune A J, Yokosuk M O, et al. Strong spin-lattice coupling in CrSiTe3. APL Mater, 2015, 3, 041515 doi: 10.1063/1.4914134
[70]
Lee J, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16, 7433 doi: 10.1021/acs.nanolett.6b03052
[71]
Kuo C, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 Van der Waals crystals. Sci Rep, 2016, 6, 20904 doi: 10.1038/srep20904
[72]
Freitas D C, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1T-CrTe2. J Phy: Condens Matter, 2015, 27, 176002 doi: 10.1088/0953-8984/27/17/176002
[73]
Stanley H E, Kaplan T A. Possibility of a phase transition for the two-dimensional Heisenberg model. Phys Rev Lett, 1966, 17, 913 doi: 10.1103/PhysRevLett.17.913
[74]
Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C, 1973, 6, 1181 doi: 10.1088/0022-3719/6/7/010
[75]
Fröhlich J, Lieb E H. Existence of phase transitions for anisotropic Heisenberg models. Phys Rev Lett, 1977, 38, 440 doi: 10.1103/PhysRevLett.38.440
[76]
Mohn P. Magnetism in the solid state: an introduction. Berlin: Springer, 2005
[77]
Blundell S. Magnetism in condensed matter. Oxford: Oxford University Press, 2001
[78]
Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556, 80 doi: 10.1038/nature26154
[79]
Samarth N. Condensed-matter physics: Magnetism in flatland. Nature, 2017, 546, 216 doi: 10.1038/546216a
[80]
Tsubokawa I. On the magnetic properties of a CrBr3 single crystal. J Phys Soc Jpn, 1960, 15, 1664 doi: 10.1143/JPSJ.15.1664
[81]
Hansen W N. Some magnetic properties of the chromium (III) halides at 4.2°K. J Appl Phys, 1959, 30, S304 doi: 10.1063/1.2185944
[82]
Starr C, Bitter F, Kaufmann A R. The magnetic properties of the iron group anhydrous chlorides at low temperatures. I. experimental. Phys Rev, 1940, 58, 977 doi: 10.1103/PhysRev.58.977
[83]
Hansen W N, Griffel M. Heat capacities of CrF3 and CrCl3 from 15 to 300 K. J. Chem. Phys, 1958, 28, 902-907 doi: 10.1063/1.1744294
[84]
Cable J W, Wilkinson M K, Wollan E O. Neutron diffraction investigation of antiferromagnetism in CrCl3. J Phys Chem Solids, 1961, 19, 29 doi: 10.1016/0022-3697(61)90053-1
[85]
Berry K O, Smardzewski R R, McCarley R E. Vaporization reactions of vanadium iodides and evidence for gaseous vanadium (IV) iodide. Inorg Chem, 1969, 8, 1994 doi: 10.1021/ic50079a034
[86]
Zhuang H L, Xie Y, Kent P R C, et al. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys Rev B, 2015, 92, 035407 doi: 10.1103/PhysRevB.92.035407
[87]
Ouvrard G, Brec R, Rouxel J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater Res Bull, 1985, 20, 1181 doi: 10.1016/0025-5408(85)90092-3
[88]
Taylor B, Steger J, Wold A, et al. Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg Chem, 1974, 13, 2719 doi: 10.1021/ic50141a034
[89]
Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed
[90]
Brec R. Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3. In: Intercalation in Layered Materials. Vol. 148. Springer, 1986
[91]
Wildes A R, Simonet V, Ressouche E, et al. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J Phys: Condens Matter, 2017, 29, 455801 doi: 10.1088/1361-648X/aa8a43
[92]
Joy P A, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys Rev B, 1992, 46, 5425 doi: 10.1103/PhysRevB.46.5425
[93]
Kurosawa K, Saito S, Yamaguchi Y. Neutron diffraction study on MnPS3 and FePS3. J Phys Soc Jpn, 1983, 52, 3919 doi: 10.1143/JPSJ.52.3919
[94]
Arai M, Moriya R, Yabuki N, et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett, 2015, 107, 103107 doi: 10.1063/1.4930311
[95]
Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett, 2018, 18, 4303 doi: 10.1021/acs.nanolett.8b01278
[96]
Song T, Cai X, Tu M W, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360, 1214 doi: 10.1126/science.aar4851
[97]
Klein D R, MacNeill D, Lado J L, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360, 1218 doi: 10.1126/science.aar3617
[98]
Kim H H, Yang B, Patel T, et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett, 2018, 85, 4890 doi: 10.1021/acs.nanolett.8b01552
[99]
Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9, 2516 doi: 10.1038/s41467-018-04953-8
[100]
Kim H H, Yang B, Tian S, Li C, et al. Maximizing tunnel magnetoresistance across three ultrathin chromium trihalides. arXiv: 1904.10476, 2019
[101]
Amet F, Wiliams J R, Garcia A G F, et al. Tunneling spectroscopy of graphene-boron-nitride heterostructures. Phys Rev B, 2012, 85, 073405 doi: 10.1103/PhysRevB.85.073405
[102]
Vdovin E E, Mishchenko A, Greenaway M T, et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys Rev Lett, 2016, 116, 186603 doi: 10.1103/PhysRevLett.116.186603
[103]
Jung S, Park M, Park J, et al. Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy. Sci Rep, 2015, 5, 16642 doi: 10.1038/srep16642
[104]
Chandni U, Watanabe K, Taniguchi T, et al. Signatures of phonon and defect-assisted tunneling in planar metal-hexagonal boron nitride-graphene junctions. Nano Lett, 2016, 16, 7982 doi: 10.1021/acs.nanolett.6b04369
[105]
Chandni U, Watanabe K, Taniguchi T, et al. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett, 2015, 15, 7329 doi: 10.1021/acs.nanolett.5b02625
[106]
Klein D R, MacNeill D, Song Q, et al. Giant enhancement of interlayer exchange in an ultrathin 2D magnet. arXiv:1903.00002, 2019
[107]
Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6
[108]
Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: a spin-based electronics vision for the future. Science, 2001, 294, 1488 doi: 10.1126/science.1065389
[109]
Han W, Kawakami R K, Gmitra M, et al. Graphene spintronics. Nat Nanotechnol, 2014, 9, 794 doi: 10.1038/nnano.2014.214
[110]
Xing W, Chen Y, Odenthal P M, et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater, 2017, 4, 024009 doi: 10.1088/2053-1583/aa7034
[111]
Yang Q, Zhou Z, Wang L, et al. Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv Mater, 2018, 30, 1800449 doi: 10.1002/adma.v30.22
[112]
Cui B, Song C, Gehring G A, et al. Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv Funct Mater, 2015, 25, 864 doi: 10.1002/adfm.201403370
[113]
Chiba D, Fukami S, Shimamura K, et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater, 2011, 10, 853 doi: 10.1038/nmat3130
[114]
Li Q, Yang M, Gong C, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett, 2018, 18, 5974 doi: 10.1021/acs.nanolett.8b02806
[115]
D'yakonov M I, Perel' V I. Possibility of orienting electron spin with current. Pis'ma Zh Éksp Teor Fiz, 1971, 13, 467
[116]
D'yakonov M I, Perel' V I. Current-induced spin orientation of electrons in semiconductors. Phys Lett A, 1971, 35, 459 doi: 10.1016/0375-9601(71)90196-4
[117]
Hirsch J E. Spin Hall effect. Phys Rev Lett, 1999, 83, 1834 doi: 10.1103/PhysRevLett.83.1834
[118]
Zhang S. Spin Hall effect in the presence of spin diffusion. Phys Rev Lett, 2000, 85, 393 doi: 10.1103/PhysRevLett.85.393
[119]
Jungwirth T, Wunderlich J, Olejník K. Spin Hall effect devices. Nat Mater, 2012, 11, 382 doi: 10.1038/nmat3279
[120]
Sinova J, Valenzuela S O, Wunderlich J, et al. Spin Hall effects. Rev Mod Phys, 2015, 87, 1213 doi: 10.1103/RevModPhys.87.1213
[121]
Liu L, Pai C, Li Y, et al. Spin-torque switching with giant spin Hall effect of tantalum. Science, 2012, 336, 555 doi: 10.1126/science.1218197
[122]
Yu G, Upadhyaya P, Fan Y, et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol, 2014, 9, 548 doi: 10.1038/nnano.2014.94
[123]
Johansen Ø, Risinggård V, Sudbø A, et al. Current control of magnetism in two-dimensional Fe3GeTe2. Phys Rev Lett, 2019, 122, 217203 doi: 10.1103/PhysRevLett.122.217203
[124]
Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. arXiv: 1902.05794, 2019
[125]
Alghamdi M, Lohmann M, Li J, et al. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. arXiv:1903.00571, 2019
[126]
Xie L, Cui X. Manipulating spin-polaried photocurrents in 2D transition metal dichalcogenides. Proceedings of the National Academy of Sciences, 2016, 113, 3746 doi: 10.1073/pnas.1523012113
[127]
Tong Q, Liu F, Xiao X, et al. Skyrmions in the moire of van der Waals 2D magnets. Nano Lett, 2018, 18, 7194 doi: 10.1021/acs.nanolett.8b03315
[128]
Linder J, Robinson H W A. Superconducting spintronics. Nat Phys, 2015, 11, 307 doi: 10.1038/nphys3242
[129]
Guo S, Man H, Wang K, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/PhysRevB.99.155201
[130]
Guo S, Ning F. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 2018, 27, 097502 doi: 10.1088/1674-1056/27/9/097502
[131]
Wang X, Wang H, Ma J, et al. Efficiently rotating the magnetization vector in a magnetic semiconductor via organic molecules. ACS Appl Mater Interfaces, 2019, 11, 6615 doi: 10.1021/acsami.8b19529
[132]
Wang X, Wang H, Pan D, et al. Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules. Adv Mater, 2015, 27, 8043 doi: 10.1002/adma.201503547
[133]
Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[134]
Cui Y, Li B, Li J, et al. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci Chin Phys, Mechan Astron, 2018, 61, 016801 doi: 10.1007/s11433-017-9105-x
Fig. 1.  (Color online) (a, b) Typical spin valve devices made of graphene[33, 34]. (c) The performance of non-local magneto-resistance for CVD graphene spin valve with different channel lengths[34].

Fig. 2.  (Color online) (a, b) Schematics of configurations for 2D spin valve devices, and (c) 2D spin filter tunnel junction (sf-TJ). (d–f) The first spin valve demonstrated using 2D vdW magnetic (Fe-doped TaS2) materials[94].

Fig. 3.  (Color online) (a) Schematics of CrI3 sf-TJ[96]. (b-d) Optical images of several iterations of vdW 2D sf-TJ devices since 2017[96, 99, 106]. Notice that all of them have very small junction area possibly to reduce the number of magnetic domains. (e, f) The magneto-tunneling current and spin-filtered magnetoresistance for a four-layered CrI3 sf-TJ device[96].

Fig. 4.  (Color online) Optical image of several versions of spin-FETs based on magnetic vdW materials (a) semiconducting CrSiTe3[62], (b) semiconducting Cr2Ge2Te6[110], (c) h-BN encapsulated Cr2Ge2Te6 (red and black dashed lines label the edge of Cr2Ge2Te6 and graphene electrodes, respectively)[15], and (d) Al2O3-assisted exfoliated 4-layered metallic Fe3GeTe2[17], respectively. Scale bars in (c) and (d) are 10 and 100 μm, respectively. (e) Schematic of the tunable Fermi level and simplified spin-polarized band structure of the vdW intrinsic magnetic semiconductor[15]. (f, g) Gate tuned magnetic hysteresis loops and gate-tuned IV curves of the few-layered Cr2Ge2Te6 planar FET device[15]. (h, i) Longitudinal conductivity and Curie temperature of the Fe3GeTe2 planar FET as a function of ion liquid gate[17]. (j) The anomalous Hall curves of the ionic-gated Fe3GeTe2 planar FET at different temperatures[17].

Fig. 5.  (Color online) (a, b) Schematic and optical image of a typical Pt/FGT device[124]. (c) Hall resistivity recorded as a function of current flowing in the 2D vdW heterostructure device. A hysteresis loop can be seen, demonstrating the current-driven magnetic switch of the magnetizations in the FGT layer[124]. (d) Switching current as a function of externally applied in-plane magnetic fields at different temperatures[124]. (e) Schematic structure of Pt/FGT device[125]. (f) Anomalous Hall effect curve of the Pt/FGT device[125]. (g) Current-induced magnetic switch at different external magnetic fields[125].

Fig. 6.  (Color online) Illustration of different nanostructures for vdW spintronics.

Fig. 7.  (Color online) A roadmap for the exfoliated spintronics.

Table 1.   A list of typical 2D vdW magnetic materials and their magnetic fingerprints.

MaterialBandgapMagnetic orderingsWay to getMeasurement techniquesExchange
interactions
Critical temperature TC/TNTunability
CrI3[13, 14, 20, 63]1.2 eVIntralayer/FM Interlayer/AFM FM/bulkExfoliatedMagneto-optic Kerr effect (MOKE)Ising/direct
Double-exchange/
super-exchange
64 K/bulk 45 1LThickness
Gate/ionic liquid electric field
CrBr3[2123, 46]2.1 eV/bulkFM/bulk FM/2DHQ graphene provided/bulk Exfoliated/1LMagnetic circular dichroism (MCD)Heisenberg/direct35 K/bulk
37 K/3L 36/2L 27/1L
Not available (NA)
CrCl3[24, 57, 64, 65]3.1 eV/bulkIntralayer/FM Interlayer/AFM AFM/bulkChemical vapor transport(CVT)/bulk Exfoliated/2LTunnelingXY/direct14 K/bulk
17 K/few-layer 16/2L
Thickness
Cr2Si2Te6[62, 6669]0.4 eV/direct-bulk 1.2 eV/indirect/bulkFMSelf-flux/bulk Exfoliated/2DHeisenberg/direct
Double-exchange/
super-exchange
32 K/bulk
80 K/2D
Thickness
Cr2Ge2Te6[15, 19]0.45 eVFMExfoliatedMOKEHeisenberg/direct45 K(bulk)Gate/ionic liquid
Fe3GeTe2[17]0FMA12O3 assisted exfoliatedAnomalous Hall Effect (AHE)Ising/direct
Itinerate/super-exchange
180 K/bulk
20 K/1L
Thickness Ionic liquid
FePS3[25, 70]1.5 eVAFMCVTRaman + DFTIsing/direct123 K/bulk
118 K/1L
NA
MnPS3[25, 26, 47]2.4 eVAFMCVT/bulk Exfoliated/2DPhysical property measurement systems (PPMS)/bulk RamanHeisenberg/direct78 K/bulkLiquid gating
NiPS3[27, 71]1.6 eV/indirect
>2.4 eV/direct
AFMCVT/bulk Exfoliated/2LRamanXY/direct155 K/bulk
130 K/2L
NA
VSe2[17, 29]0FM/1L AFM/2L Paramagnetic/bulkMolecular beam epitaxy(MBE)MOKE AHENA>300 KThickness
Electric field
CrTe2[72]0FMOxidation of KCrTe2SquidItinerate/super-exchange310 K/bulkNA
V5S8[30]0AFM/bulk FM/3.2 nmChemical Vapor Deposition (CVD)/10 nm Exfoliated/3.2 nmAHENA32 K/bulk
2 K/3.2 nm
Thickness
CrSe[31]NAFMCVDPPMSNA208 KNA
Cr2S3[32]NAFMCVDPPMSNA120 KNA
DownLoad: CSV
[1]
Tedrow P M, Meservey R. Spin polarization of electrons tunneling from films of Fe, Co, Ni, and Gd. Phys Rev B, 1973, 7, 318 doi: 10.1103/PhysRevB.7.318
[2]
Jullière M. Tunneling between ferromagnetic films. Phys Lett A, 1975, 54, 225 doi: 10.1016/0375-9601(75)90174-7
[3]
Johnson M, Silsbee R H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys Rev Lett, 1985, 55, 1790 doi: 10.1103/PhysRevLett.55.1790
[4]
Baibich M, Broto J M, Fert A, et al. Magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett, 1988, 61, 2472 doi: 10.1103/PhysRevLett.61.2472
[5]
Binasch G, Grünberg P, Saurenbach F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B, 1989, 39, 4828 doi: 10.1103/physrevb.39.4828
[6]
Datta S, Das B. Electronic analog of the electro-optic modulator. Appl Phys Lett, 1990, 56, 665 doi: 10.1063/1.102730
[7]
Dieny B, Speriosu V S, Metin S, et al. Magnetotransport properties of magnetically soft spin-valve structures. J Appl Phys, 1991, 69, 4774 doi: 10.1063/1.348252
[8]
Moodera J S, Kinder L R, Wong T M, et al. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys Rev Lett, 1995, 74, 3273 doi: 10.1103/PhysRevLett.74.3273
[9]
Rashba E I. Properties of semiconductors with an extremum loop. I. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Soviet Phys Solid State, 1960, 2, 1109
[10]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306, 666 doi: 10.1126/science.1102896
[11]
Nicolas M, Marco G, Philippe S, et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat Nanotechnol, 2018, 13, 246 doi: 10.1038/s41565-017-0035-5
[12]
Mak K F, Lee C, Hone J, et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett, 2010, 105, 136805 doi: 10.1103/PhysRevLett.105.136805
[13]
Huang B, Clark G, Navarro-Moratalla E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546, 270 doi: 10.1038/nature22391
[14]
Huang B, Clark G, Klein D R, et al. Electrical control of 2D magnetism in bilayer CrI3. Nat Nanotechnol, 2018, 13, 544 doi: 10.1038/s41565-018-0121-3
[15]
Wang Z, Zhang T, Ding M, et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat Nanotechnol, 2018, 13, 554 doi: 10.1038/s41565-018-0186-z
[16]
Mermin N D, Wagner H. Absence of derromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett, 1966, 17, 1133 doi: 10.1103/PhysRevLett.17.1133
[17]
Deng Y J, Yu Y J, Song Y C, et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563, 94 doi: 10.1038/s41586-018-0626-9
[18]
Fei Z Y, Huang B, Malinowski P, et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat Mater, 2018, 17, 778 doi: 10.1038/s41563-018-0149-7
[19]
Gong C, Li L, Li Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature, 2017, 546, 265 doi: 10.1038/nature22060
[20]
Zhong D, Seyler K L, Linpeng X Y, et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci Adv, 2017, 3, 5 doi: 10.1126/sciadv.1603113
[21]
Ghazaryan D, Greenaway M T, Wang Z, et al. Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3. Nat Electron, 2018, 1, 344 doi: 10.1038/s41928-018-0087-z
[22]
Samuelsen E J, Silberglitt R, Shirane G, et al. Spin waves in ferromagnetic CrBr3 studied by inelastic neutron scattering. Phys Rev B, 1971, 3, 157 doi: 10.1103/PhysRevB.3.157
[23]
Kim H H, Yang B W, Li S W, et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. PNAS, 2019, 116(23), 11131 doi: 10.1073/pnas.1902100116
[24]
Cai X H, Song T C, Wilson N P, et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett, 2019, 19(6), 3993 doi: 10.1021/acs.nanolett.9b01317
[25]
Rehman Z U, Muhammad Z, Moses O A, et al. Magnetic isotropy/anisotropy in layered metal phosphorous trichalcogenide MPS3 (M = Mn, Fe) single crystals. Micromachines, 2018, 9, 292 doi: 10.3390/mi9060292
[26]
Long G, Zhang T, Cai X B, et al. Isolation and characterization of few-layer manganese thiophosphite. ACS Nano, 2017, 11, 11330 doi: 10.1021/acsnano.7b05856
[27]
Kim K, Lim S Y, Lee J U, et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat Commun, 2019, 10, 345 doi: 10.1038/s41467-018-08284-6
[28]
Bonilla M, Kolekar S, Ma Y J, et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat Nanotechnol, 2018, 13, 289 doi: 10.1038/s41565-018-0063-9
[29]
Gong S J, Gong C, Sun Y Y, et al. Electrically induced 2D half-metallic antiferromagnets and spin field effect transistors. PANS, 2018, 115, 8511 doi: 10.1073/pnas.1715465115
[30]
Niu J J, Yan B M, Ji Q Q, et al. Anomalous Hall effect and magnetic orderings in nanothick V5S8. Phys Rev B, 2017, 96, 075402 doi: 10.1103/PhysRevB.96.075402
[31]
Zhang Y, Chu J W, Yin L, et al. Ultrathin magnetic 2D single-crystal CrSe. Adv Mater, 2019, 31, 1900056 doi: 10.1002/adma.v31.19
[32]
Chu J W, Zhang Y, Wen Y, et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett, 2019, 19, 2154 doi: 10.1021/acs.nanolett.9b00386
[33]
Nikolaos T, Csaba J, Mihaita P, et al. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature, 2007, 448, 571 doi: 10.1038/nature06037
[34]
Kamalakar M V, Groenveld C, Dankert A, et al. Long distance spin communication in chemical vapour deposited graphene. Nat Commun, 2015, 6, 6766 doi: 10.1038/ncomms7766
[35]
Wei P, Lee S, Lemaitre F, et al. Strong interfacial exchange field in the graphene/EuS heterostructure. Nat Mater, 2016, 15, 711 doi: 10.1038/nmat4603
[36]
Wang W, Narayan A, Tang L, et al. Spin-valve effect in NiFe/MoS2/NiFe junctions. Nano Lett, 2015, 15, 5261 doi: 10.1021/acs.nanolett.5b01553
[37]
Xiao D, Liu G B, Feng W X, et al. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys Rev Lett, 2012, 108, 196802 doi: 10.1103/PhysRevLett.108.196802
[38]
Mak K F, He K L, Shan J, et al. Control of valley polarization in monolayer MoS2 by optical helicity. Nat Nanotechnol, 2012, 7, 494 doi: 10.1038/nnano.2012.96
[39]
Stier A V, McCreary K M, Jonker B T, et al. Exciton diamagnetic shifts and valley Zeeman effects in monolayer WS2 and MoS2 to 65 Tesla. Nat Commun, 2016, 7, 10643 doi: 10.1038/ncomms10643
[40]
Roch J G, Froehlicher G, Leisgang N, et al. Spin-polarized electrons in monolayer MoS2. Nat Nanotechnol, 2019, 14, 432 doi: 10.1038/s41565-019-0397-y
[41]
Kane C L, Mele E J. Quantum spin Hall effect in graphene. Phys Rev Lett, 2005, 95, 226801 doi: 10.1103/PhysRevLett.95.226801
[42]
Young A F, Sanchez-Yamagishi J D, Hunt B, et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature, 2014, 505, 528 doi: 10.1038/nature12800
[43]
Andrea C, Svetlana K, Mario R, et al. Graphene spintronic devices with molecular nanomagnets. Nano Lett, 2011, 11, 2634 doi: 10.1021/nl2006142
[44]
Dillon J F, Kamimura H, Remeika J P, et al. Magneto-optical properties of ferromagnetic chromium trihalides. J Phys Chem Solids, 1966, 27, 1531 doi: 10.1016/0022-3697(66)90148-X
[45]
Li B, Xing T, Zhong M Z, et al. A two-dimensional Fe-doped SnS2 magnetic semiconductor. Nat Commun, 2017, 8, 1958 doi: 10.1038/s41467-017-02077-z
[46]
Ho J T, Litster J D. Magnetic equation of state of CrBr3 near critical point. Phys Rev Lett, 1969, 22, 603 doi: 10.1103/PhysRevLett.22.603
[47]
Okuda K, Kurosawa K, Saito S, et al. Magnetic properties of layered compound MnPS3. J Phys Soc Jpn, 1986, 55, 4456 doi: 10.1143/JPSJ.55.4456
[48]
Carteaux V, Brunet D, Ouvrard G, et al. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J Phys Condens Matter, 1995, 7, 69 doi: 10.1088/0953-8984/7/1/008
[49]
Ji H, Stokes R A, Alegria L D, et al. A ferromagnetic insulating substrate for the epitaxial growth of topological insulators. J Appl Phys, 2013, 114, 114907 doi: 10.1063/1.4822092
[50]
Deiseroth H J, Aleksandrov K, Reiner C, et al. Fe3GeTe2 and Ni3GeTe2—two new layered transition-metal compounds: crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur J Inorg Chem, 2006, 2006, 1561 doi: 10.1002/(ISSN)1099-0682
[51]
Chen B, Yang J, Wang H, et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J Phys Soc Jpn, 2013, 82, 124711 doi: 10.7566/JPSJ.82.124711
[52]
Dillon J F, Olson C E. Magnetization resonance and optical properties of ferromagnet CrI3. J Appl Phys, 1965, 36, 1259 doi: 10.1063/1.1714194
[53]
Carteaux V, Moussa F, Spiesser M. 2D ising-like ferromagnetic behavior for the lamellar Cr2Si2Te6 compound: a neutron-scattering investigation. Europhys Lett, 1995, 29, 251 doi: 10.1209/0295-5075/29/3/011
[54]
Li X, Cao T, Niu Q, et al. Coupling the valley degree of freedom to antiferromagnetic order. Proc Natl Acad Sci USA, 2013, 110, 3738 doi: 10.1073/pnas.1219420110
[55]
Sachs B, Wehling T O, Novoselov K S, et al. Ferromagnetic two-dimensional crystals: single layers of K2CuF4. Phys Rev B, 2013, 88, 201402 doi: 10.1103/PhysRevB.88.201402
[56]
Kong T, Stolze K, Timmons E I, et al. VI3—a new layered ferromagnetic semiconductor. Adv. Mater, 2019, 31, 1808074 doi: 10.1002/adma.201808074
[57]
McGuire M A, Dixit H, Cooper V R, et al. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem Mater, 2015, 27, 612 doi: 10.1021/cm504242t
[58]
Sivadas N, Daniels M W, Swendsen R H, et al. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys Rev B, 2015, 91, 235425 doi: 10.1103/PhysRevB.91.235425
[59]
Du K, Wang X, Liu Y, et al. Weak van der Waals stacking, wide-range band gap, and raman study on ultrathin layers of metal phosphorus trichalcogenides. ACS Nano, 2106, 10, 1738 doi: 10.1021/acsnano.5b05927
[60]
May A F, Calder S, Cantoni C, et al. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3– xGeTe2. Phys Rev B, 2016, 93, 014411 doi: 10.1103/PhysRevB.93.014411
[61]
Lee S, Choi K Y, Lee S, et al. Tunneling transport of mono- and few-layers magnetic van der Waals MnPS3. Appl Mater, 2016, 4, 086108 doi: 10.1063/1.4961211
[62]
Lin M, Zhuang H L, Yan J, et al. Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material. J Mater Chem C, 2016, 4, 315 doi: 10.1039/C5TC03463A
[63]
Zhang W, Qu Q, Zhu P, et al. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J Mater Chem C, 2015, 3, 12457 doi: 10.1039/C5TC02840J
[64]
McGuire M A, Clark G, KC S, et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys Rev Mater, 2017, 1, 014001 doi: 10.1103/PhysRevMaterials.1.014001
[65]
McGuire, M. A Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals, 2017, 7, 121 doi: 10.3390/cryst7050121
[66]
Williams T J, Aczel C C, Lumsden M D, et al. Magnetic correlations in the quasi-two-dimensional semiconducting ferromagnet CrSiTe3. Phys Rev B, 2015, 92, 144404 doi: 10.1103/PhysRevB.92.144404
[67]
Li X, Yang J. CrXTe3 (X = Si, Ge) nanosheets: two dimensional intrinsic ferromagnetic semiconductors. J Mater Chem C, 2014, 2, 7071 doi: 10.1039/C4TC01193G
[68]
Carteaux V, Ouvrard G, Grenier J C, et al. Magnetic structure of the new layered ferromagnetic chromium hexatellurosilicate Cr2Si2Te6. J Magn Magn Mater, 1991, 94, 127 doi: 10.1016/0304-8853(91)90121-p
[69]
Casto L D, Clune A J, Yokosuk M O, et al. Strong spin-lattice coupling in CrSiTe3. APL Mater, 2015, 3, 041515 doi: 10.1063/1.4914134
[70]
Lee J, Lee S, Ryoo J H, et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett, 2016, 16, 7433 doi: 10.1021/acs.nanolett.6b03052
[71]
Kuo C, Neumann M, Balamurugan K, et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 Van der Waals crystals. Sci Rep, 2016, 6, 20904 doi: 10.1038/srep20904
[72]
Freitas D C, Weht R, Sulpice A, et al. Ferromagnetism in layered metastable 1T-CrTe2. J Phy: Condens Matter, 2015, 27, 176002 doi: 10.1088/0953-8984/27/17/176002
[73]
Stanley H E, Kaplan T A. Possibility of a phase transition for the two-dimensional Heisenberg model. Phys Rev Lett, 1966, 17, 913 doi: 10.1103/PhysRevLett.17.913
[74]
Kosterlitz J M, Thouless D J. Ordering, metastability and phase transitions in two-dimensional systems. J Phys C, 1973, 6, 1181 doi: 10.1088/0022-3719/6/7/010
[75]
Fröhlich J, Lieb E H. Existence of phase transitions for anisotropic Heisenberg models. Phys Rev Lett, 1977, 38, 440 doi: 10.1103/PhysRevLett.38.440
[76]
Mohn P. Magnetism in the solid state: an introduction. Berlin: Springer, 2005
[77]
Blundell S. Magnetism in condensed matter. Oxford: Oxford University Press, 2001
[78]
Cao Y, Fatemi V, Demir A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556, 80 doi: 10.1038/nature26154
[79]
Samarth N. Condensed-matter physics: Magnetism in flatland. Nature, 2017, 546, 216 doi: 10.1038/546216a
[80]
Tsubokawa I. On the magnetic properties of a CrBr3 single crystal. J Phys Soc Jpn, 1960, 15, 1664 doi: 10.1143/JPSJ.15.1664
[81]
Hansen W N. Some magnetic properties of the chromium (III) halides at 4.2°K. J Appl Phys, 1959, 30, S304 doi: 10.1063/1.2185944
[82]
Starr C, Bitter F, Kaufmann A R. The magnetic properties of the iron group anhydrous chlorides at low temperatures. I. experimental. Phys Rev, 1940, 58, 977 doi: 10.1103/PhysRev.58.977
[83]
Hansen W N, Griffel M. Heat capacities of CrF3 and CrCl3 from 15 to 300 K. J. Chem. Phys, 1958, 28, 902-907 doi: 10.1063/1.1744294
[84]
Cable J W, Wilkinson M K, Wollan E O. Neutron diffraction investigation of antiferromagnetism in CrCl3. J Phys Chem Solids, 1961, 19, 29 doi: 10.1016/0022-3697(61)90053-1
[85]
Berry K O, Smardzewski R R, McCarley R E. Vaporization reactions of vanadium iodides and evidence for gaseous vanadium (IV) iodide. Inorg Chem, 1969, 8, 1994 doi: 10.1021/ic50079a034
[86]
Zhuang H L, Xie Y, Kent P R C, et al. Computational discovery of ferromagnetic semiconducting single-layer CrSnTe3. Phys Rev B, 2015, 92, 035407 doi: 10.1103/PhysRevB.92.035407
[87]
Ouvrard G, Brec R, Rouxel J. Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd). Mater Res Bull, 1985, 20, 1181 doi: 10.1016/0025-5408(85)90092-3
[88]
Taylor B, Steger J, Wold A, et al. Preparation and properties of iron phosphorus triselenide, FePSe3. Inorg Chem, 1974, 13, 2719 doi: 10.1021/ic50141a034
[89]
Lado J L, Fernández-Rossier J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater, 2017, 4, 035002 doi: 10.1088/2053-1583/aa75ed
[90]
Brec R. Review on structural and chemical properties of transition metal phosphorus trisulfides MPS3. In: Intercalation in Layered Materials. Vol. 148. Springer, 1986
[91]
Wildes A R, Simonet V, Ressouche E, et al. The magnetic properties and structure of the quasi-two-dimensional antiferromagnet CoPS3. J Phys: Condens Matter, 2017, 29, 455801 doi: 10.1088/1361-648X/aa8a43
[92]
Joy P A, Vasudevan S. Magnetism in the layered transition-metal thiophosphates MPS3 (M = Mn, Fe, and Ni). Phys Rev B, 1992, 46, 5425 doi: 10.1103/PhysRevB.46.5425
[93]
Kurosawa K, Saito S, Yamaguchi Y. Neutron diffraction study on MnPS3 and FePS3. J Phys Soc Jpn, 1983, 52, 3919 doi: 10.1143/JPSJ.52.3919
[94]
Arai M, Moriya R, Yabuki N, et al. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide. Appl Phys Lett, 2015, 107, 103107 doi: 10.1063/1.4930311
[95]
Wang Z, Sapkota D, Taniguchi T, et al. Tunneling spin valves based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals heterostructures. Nano Lett, 2018, 18, 4303 doi: 10.1021/acs.nanolett.8b01278
[96]
Song T, Cai X, Tu M W, et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science, 2018, 360, 1214 doi: 10.1126/science.aar4851
[97]
Klein D R, MacNeill D, Lado J L, et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science, 2018, 360, 1218 doi: 10.1126/science.aar3617
[98]
Kim H H, Yang B, Patel T, et al. One million percent tunnel magnetoresistance in a magnetic van der Waals heterostructure. Nano Lett, 2018, 85, 4890 doi: 10.1021/acs.nanolett.8b01552
[99]
Wang Z, Gutiérrez-Lezama I, Ubrig N, et al. Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3. Nat Commun, 2018, 9, 2516 doi: 10.1038/s41467-018-04953-8
[100]
Kim H H, Yang B, Tian S, Li C, et al. Maximizing tunnel magnetoresistance across three ultrathin chromium trihalides. arXiv: 1904.10476, 2019
[101]
Amet F, Wiliams J R, Garcia A G F, et al. Tunneling spectroscopy of graphene-boron-nitride heterostructures. Phys Rev B, 2012, 85, 073405 doi: 10.1103/PhysRevB.85.073405
[102]
Vdovin E E, Mishchenko A, Greenaway M T, et al. Phonon-assisted resonant tunneling of electrons in graphene-boron nitride transistors. Phys Rev Lett, 2016, 116, 186603 doi: 10.1103/PhysRevLett.116.186603
[103]
Jung S, Park M, Park J, et al. Vibrational properties of h-BN and h-BN-graphene heterostructures probed by inelastic electron tunneling spectroscopy. Sci Rep, 2015, 5, 16642 doi: 10.1038/srep16642
[104]
Chandni U, Watanabe K, Taniguchi T, et al. Signatures of phonon and defect-assisted tunneling in planar metal-hexagonal boron nitride-graphene junctions. Nano Lett, 2016, 16, 7982 doi: 10.1021/acs.nanolett.6b04369
[105]
Chandni U, Watanabe K, Taniguchi T, et al. Evidence for defect-mediated tunneling in hexagonal boron nitride-based junctions. Nano Lett, 2015, 15, 7329 doi: 10.1021/acs.nanolett.5b02625
[106]
Klein D R, MacNeill D, Song Q, et al. Giant enhancement of interlayer exchange in an ultrathin 2D magnet. arXiv:1903.00002, 2019
[107]
Jiang S, Shan J, Mak K F. Electric-field switching of two-dimensional van der Waals magnets. Nat Mater, 2018, 17, 406 doi: 10.1038/s41563-018-0040-6
[108]
Wolf S A, Awschalom D D, Buhrman R A, et al. Spintronics: a spin-based electronics vision for the future. Science, 2001, 294, 1488 doi: 10.1126/science.1065389
[109]
Han W, Kawakami R K, Gmitra M, et al. Graphene spintronics. Nat Nanotechnol, 2014, 9, 794 doi: 10.1038/nnano.2014.214
[110]
Xing W, Chen Y, Odenthal P M, et al. Electric field effect in multilayer Cr2Ge2Te6: a ferromagnetic 2D material. 2D Mater, 2017, 4, 024009 doi: 10.1088/2053-1583/aa7034
[111]
Yang Q, Zhou Z, Wang L, et al. Ionic gel modulation of RKKY interactions in synthetic anti-ferromagnetic nanostructures for low power wearable spintronic devices. Adv Mater, 2018, 30, 1800449 doi: 10.1002/adma.v30.22
[112]
Cui B, Song C, Gehring G A, et al. Electrical manipulation of orbital occupancy and magnetic anisotropy in manganites. Adv Funct Mater, 2015, 25, 864 doi: 10.1002/adfm.201403370
[113]
Chiba D, Fukami S, Shimamura K, et al. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat Mater, 2011, 10, 853 doi: 10.1038/nmat3130
[114]
Li Q, Yang M, Gong C, et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett, 2018, 18, 5974 doi: 10.1021/acs.nanolett.8b02806
[115]
D'yakonov M I, Perel' V I. Possibility of orienting electron spin with current. Pis'ma Zh Éksp Teor Fiz, 1971, 13, 467
[116]
D'yakonov M I, Perel' V I. Current-induced spin orientation of electrons in semiconductors. Phys Lett A, 1971, 35, 459 doi: 10.1016/0375-9601(71)90196-4
[117]
Hirsch J E. Spin Hall effect. Phys Rev Lett, 1999, 83, 1834 doi: 10.1103/PhysRevLett.83.1834
[118]
Zhang S. Spin Hall effect in the presence of spin diffusion. Phys Rev Lett, 2000, 85, 393 doi: 10.1103/PhysRevLett.85.393
[119]
Jungwirth T, Wunderlich J, Olejník K. Spin Hall effect devices. Nat Mater, 2012, 11, 382 doi: 10.1038/nmat3279
[120]
Sinova J, Valenzuela S O, Wunderlich J, et al. Spin Hall effects. Rev Mod Phys, 2015, 87, 1213 doi: 10.1103/RevModPhys.87.1213
[121]
Liu L, Pai C, Li Y, et al. Spin-torque switching with giant spin Hall effect of tantalum. Science, 2012, 336, 555 doi: 10.1126/science.1218197
[122]
Yu G, Upadhyaya P, Fan Y, et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat Nanotechnol, 2014, 9, 548 doi: 10.1038/nnano.2014.94
[123]
Johansen Ø, Risinggård V, Sudbø A, et al. Current control of magnetism in two-dimensional Fe3GeTe2. Phys Rev Lett, 2019, 122, 217203 doi: 10.1103/PhysRevLett.122.217203
[124]
Wang X, Tang J, Xia X, et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. arXiv: 1902.05794, 2019
[125]
Alghamdi M, Lohmann M, Li J, et al. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. arXiv:1903.00571, 2019
[126]
Xie L, Cui X. Manipulating spin-polaried photocurrents in 2D transition metal dichalcogenides. Proceedings of the National Academy of Sciences, 2016, 113, 3746 doi: 10.1073/pnas.1523012113
[127]
Tong Q, Liu F, Xiao X, et al. Skyrmions in the moire of van der Waals 2D magnets. Nano Lett, 2018, 18, 7194 doi: 10.1021/acs.nanolett.8b03315
[128]
Linder J, Robinson H W A. Superconducting spintronics. Nat Phys, 2015, 11, 307 doi: 10.1038/nphys3242
[129]
Guo S, Man H, Wang K, et al. Ba(Zn,Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/PhysRevB.99.155201
[130]
Guo S, Ning F. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 2018, 27, 097502 doi: 10.1088/1674-1056/27/9/097502
[131]
Wang X, Wang H, Ma J, et al. Efficiently rotating the magnetization vector in a magnetic semiconductor via organic molecules. ACS Appl Mater Interfaces, 2019, 11, 6615 doi: 10.1021/acsami.8b19529
[132]
Wang X, Wang H, Pan D, et al. Robust manipulation of magnetism in dilute magnetic semiconductor (Ga,Mn)As by organic molecules. Adv Mater, 2015, 27, 8043 doi: 10.1002/adma.201503547
[133]
Chen L, Yang X, Yang F, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[134]
Cui Y, Li B, Li J, et al. Chemical vapor deposition growth of two-dimensional heterojunctions. Sci Chin Phys, Mechan Astron, 2018, 61, 016801 doi: 10.1007/s11433-017-9105-x
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4948 Times PDF downloads: 427 Times Cited by: 0 Times

    History

    Received: 25 June 2019 Revised: 05 July 2019 Online: Accepted Manuscript: 12 July 2019Uncorrected proof: 19 July 2019Published: 09 August 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaoxi Li, Baojuan Dong, Xingdan Sun, Hanwen Wang, Teng Yang, Guoqiang Yu, Zheng Vitto Han. Perspectives on exfoliated two-dimensional spintronics[J]. Journal of Semiconductors, 2019, 40(8): 081508. doi: 10.1088/1674-4926/40/8/081508 X X Li, B J Dong, X D Sun, H W Wang, T Yang, G Q Yu, Z V Han, Perspectives on exfoliated two-dimensional spintronics[J]. J. Semicond., 2019, 40(8): 081508. doi: 10.1088/1674-4926/40/8/081508.Export: BibTex EndNote
      Citation:
      Xiaoxi Li, Baojuan Dong, Xingdan Sun, Hanwen Wang, Teng Yang, Guoqiang Yu, Zheng Vitto Han. Perspectives on exfoliated two-dimensional spintronics[J]. Journal of Semiconductors, 2019, 40(8): 081508. doi: 10.1088/1674-4926/40/8/081508

      X X Li, B J Dong, X D Sun, H W Wang, T Yang, G Q Yu, Z V Han, Perspectives on exfoliated two-dimensional spintronics[J]. J. Semicond., 2019, 40(8): 081508. doi: 10.1088/1674-4926/40/8/081508.
      Export: BibTex EndNote

      Perspectives on exfoliated two-dimensional spintronics

      doi: 10.1088/1674-4926/40/8/081508
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return