ARTICLES

Growth of aligned SnS nanowire arrays for near infrared photodetectors

Guozhen Shen1, 2, , Haoran Chen1, 2 and Zheng Lou1

+ Author Affiliations

 Corresponding author: Guozhen Shen, gzshen@semi.ac.cn

PDF

Turn off MathJax

Abstract: Aligned SnS nanowires arrays were grown via a simple chemical vapor deposition method. As-synthesized SnS nanowires are single crystals grown along the [111] direction. The single SnS nanowire based device showed excellent response to near infrared lights with good responsivity of 267.9 A/W, high external quantum efficiency of 3.12 × 104 % and fast response time. Photodetectors were built on the aligned SnS nanowire arrays, exhibiting a light on/off ratio of 3.6, and the response and decay time of 4.5 and 0.7 s, respectively, to 1064 nm light illumination.

Key words: photodetectorsnanowiresinfraredaligned



[1]
Steinmann V, Jaramillo R, Hartman K, et al. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv Mater, 2014, 26, 7488 doi: 10.1002/adma.201402219
[2]
Zhao L, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141 doi: 10.1126/science.aad3749
[3]
Rath T, Gury L, Sanchez-Molina I, et al. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem Commun, 2015, 51, 10198 doi: 10.1039/C5CC03125G
[4]
Kumar G M, Fu X, Ilanchezhiyan P, et al. Highly sensitive flexible photodetectors based on self-assembled tin monosulfide nanoflakes with graphene electrodes. ACS Appl Mater Interface, 2017, 9(37), 32142 doi: 10.1021/acsami.7b09959
[5]
Lin Y, Wen X, Wang L, et al. Structure and optical properties of SnS nanowire arrays prepared with two-step method. Adv Mater Res, 2012, 476, 1519 doi: 10.4028/www.scientific.net/AMR.476-478.1519
[6]
Zhou X, Gan L, Zhang Q, et al. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. J Mater Chem C, 2016, 4(11), 2111 doi: 10.1039/C5TC04410C
[7]
Zheng D, Fang H, Long M, et al. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano, 2018, 12(7), 7239 doi: 10.1021/acsnano.8b03291
[8]
Chao J, Wang Z, Xu X, et al. Tin sulfide nanoribbons as high performance photoelectrochemical cells, flexible photodetectors and visible-light-driven photocatalysts. RSC Adv, 2013, 3, 2746 doi: 10.1039/c2ra22092j
[9]
Zhang Z, Yang J, Zhang K, et al. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J Mater Chem C, 2017, 5(43), 11288 doi: 10.1039/C7TC02865B
[10]
Deng Z, Cao D, He J, et al. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano, 2012, 6, 6197 doi: 10.1021/nn302504p
[11]
Ning L, Jiang T, Shao Z, et al. Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. J Mater Chem C, 2018, 6, 7077 doi: 10.1039/C8TC02139B
[12]
Zhang D, Gu L, Zhang Q, et al. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett, 2019, 19(5), 2850 doi: 10.1021/acs.nanolett.8b04887
[13]
Gu L, Tavakoli M M, Zhang D, et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv Mater, 2016, 28, 9713 doi: 10.1002/adma.201601603
[14]
Fan Z, Kapadia R, Leu P, et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett, 2010, 10, 3823 doi: 10.1021/nl1010788
[15]
Fan Z, Razzavi H, Do J, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrate. Nat Mater, 2009, 8, 648 doi: 10.1038/nmat2493
[16]
Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Adv Mater, 2000, 12, 298 doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
[17]
Wu Y, Yang P. Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc, 2001, 123, 3165 doi: 10.1021/ja0059084
[18]
Shen G, Xu J, Wang X, et al. Growth of directly transferrable In2O3 nanowire mats for transparent thin-film transistors applications. Adv Mater, 2011, 23, 771 doi: 10.1002/adma.201003474
[19]
Luo T, Liang B, Liu Z, et al. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull, 2015, 60, 101 doi: 10.1007/s11434-014-0687-6
[20]
Duan T, Lou Z, Shen G. Electrical transport and photoresponse properties of single-crystalline Cd3As2 nanowires. Sci China-Phys Mech Astron, 2015, 58, 027801 doi: 10.1007/s11433-014-5629-4
[21]
Li L, Lou Z, Shen G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv Funct Mater, 2018, 18, 1705389 doi: 10.1002/adfm.201705389
[22]
Chen S, Lou Z, Chen D, et al. Printble Zn2GeO4 microwires based flexible photodetectors with tunable photorespone. Adv Mater Technol, 2018, 3, 1800050 doi: 10.1002/admt.201800050
[23]
Lou Z, Li L, Shen G. InGaO3(ZnO) superlattice nanowires for high performance ultraviolet photodetectors. Adv Electron Mater, 2015, 1, 1500054 doi: 10.1002/aelm.201500054
[24]
Lou Z, Yang X L, Chen H R, et al. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J Semicond, 2018, 39(2), 024002 doi: 10.1088/1674-4926/39/2/024002
[25]
Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano, 2014, 8, 787 doi: 10.1021/nn405442z
[26]
Lou Z, Li L, Shen G. Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale, 2016, 8, 5219 doi: 10.1039/C5NR08792A
[27]
Chai R, Lou Z, Shen G. Highly flexible self-powered photodetectors based on core-shell Sb/CdS nanowires. J Mater Chem C, 2019, 7, 4581 doi: 10.1039/c8tc06383d
[28]
Liu Z, Luo T, Liang B, et al. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res, 2013, 6, 775 doi: 10.1007/s12274-013-0356-0
[29]
Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325, 1665 doi: 10.1126/science.1176706
[30]
Miao J, Hu W, Guo N, et al. Single InAs nanowire room temperature near-infrared photodetectors. ACS Nano, 2014, 8, 3628 doi: 10.1021/nn500201g
[31]
Ouyang B, Zhang K, Yang Y, et al. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience, 2018, 1, 16 doi: 10.1016/j.isci.2018.01.002
[32]
Chen G, Liang B, Liu Z, et al. High performance rigid and flexible visible-light photodetectors based on aligned X(In,Ga)P nanowire arrays. J Mater Chem C, 2014, 2, 1270 doi: 10.1039/C3TC31507J
Fig. 1.  (Color online) (a, b) SEM images, (c) XRD pattern, (d) TEM image, (e) SAED pattern and (f) HRTEM image of the synthesized SnS nanowires.

Fig. 2.  (Color online) Characterizations of the single SnS nanowire based photodetector. (a) SEM image of a single nanowire device. (b) I–V curves of the device to NIR lights of 808, 915, 1064 and 1342 nm, respectively. (c) I–V curves of the device to 1064 nm lights with different light intensities. (d) Light intensity dependent photocurrent at a fixed bias voltage of 3 V. (e) The reproducible and stable switching behavior of the device to 1064 nm light. (f) Transient response and decay time of the device.

Fig. 3.  (Color online) (a) Schematic of the fabrication process of the aligned SnS nanowire arrays based photodetectors. (b) SEM images of the aligned SnS nanowires deposited with PMMA and Ag nanowires.

Fig. 4.  (Color online) Characterizations of the aligned SnS nanowire array based photodetectors. (a) I–V curves of the nanowire array device to NIR lights with different wavelengths. (b) I–V curves of the device to 1064 nm lights with different light intensities. (c) Reproducible and stable switching behavior of the device to 1064 nm light. (d) Transient response and decay time of the device.

[1]
Steinmann V, Jaramillo R, Hartman K, et al. 3.88% efficient tin sulfide solar cells using congruent thermal evaporation. Adv Mater, 2014, 26, 7488 doi: 10.1002/adma.201402219
[2]
Zhao L, Tan G, Hao S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2016, 351, 141 doi: 10.1126/science.aad3749
[3]
Rath T, Gury L, Sanchez-Molina I, et al. Formation of porous SnS nanoplate networks from solution and their application in hybrid solar cells. Chem Commun, 2015, 51, 10198 doi: 10.1039/C5CC03125G
[4]
Kumar G M, Fu X, Ilanchezhiyan P, et al. Highly sensitive flexible photodetectors based on self-assembled tin monosulfide nanoflakes with graphene electrodes. ACS Appl Mater Interface, 2017, 9(37), 32142 doi: 10.1021/acsami.7b09959
[5]
Lin Y, Wen X, Wang L, et al. Structure and optical properties of SnS nanowire arrays prepared with two-step method. Adv Mater Res, 2012, 476, 1519 doi: 10.4028/www.scientific.net/AMR.476-478.1519
[6]
Zhou X, Gan L, Zhang Q, et al. High performance near-infrared photodetectors based on ultrathin SnS nanobelts grown via physical vapor deposition. J Mater Chem C, 2016, 4(11), 2111 doi: 10.1039/C5TC04410C
[7]
Zheng D, Fang H, Long M, et al. High-performance near-infrared photodetectors based on p-type SnX (X = S, Se) nanowires grown via chemical vapor deposition. ACS Nano, 2018, 12(7), 7239 doi: 10.1021/acsnano.8b03291
[8]
Chao J, Wang Z, Xu X, et al. Tin sulfide nanoribbons as high performance photoelectrochemical cells, flexible photodetectors and visible-light-driven photocatalysts. RSC Adv, 2013, 3, 2746 doi: 10.1039/c2ra22092j
[9]
Zhang Z, Yang J, Zhang K, et al. Anisotropic photoresponse of layered 2D SnS-based near infrared photodetectors. J Mater Chem C, 2017, 5(43), 11288 doi: 10.1039/C7TC02865B
[10]
Deng Z, Cao D, He J, et al. Solution synthesis of ultrathin single-crystalline SnS nanoribbons for photodetectors via phase transition and surface processing. ACS Nano, 2012, 6, 6197 doi: 10.1021/nn302504p
[11]
Ning L, Jiang T, Shao Z, et al. Light-trapping enhanced ZnO-MoS2 core-shell nanopillar arrays for broadband ultraviolet-visible-near infrared photodetection. J Mater Chem C, 2018, 6, 7077 doi: 10.1039/C8TC02139B
[12]
Zhang D, Gu L, Zhang Q, et al. Increasing photoluminescence quantum yield by nanophotonic design of quantum-confined halide perovskite nanowire arrays. Nano Lett, 2019, 19(5), 2850 doi: 10.1021/acs.nanolett.8b04887
[13]
Gu L, Tavakoli M M, Zhang D, et al. 3D arrays of 1024-pixel image sensors based on lead halide perovskite nanowires. Adv Mater, 2016, 28, 9713 doi: 10.1002/adma.201601603
[14]
Fan Z, Kapadia R, Leu P, et al. Ordered arrays of dual-diameter nanopillars for maximized optical absorption. Nano Lett, 2010, 10, 3823 doi: 10.1021/nl1010788
[15]
Fan Z, Razzavi H, Do J, et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrate. Nat Mater, 2009, 8, 648 doi: 10.1038/nmat2493
[16]
Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Adv Mater, 2000, 12, 298 doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
[17]
Wu Y, Yang P. Direct observation of vapor-liquid-solid nanowire growth. J Am Chem Soc, 2001, 123, 3165 doi: 10.1021/ja0059084
[18]
Shen G, Xu J, Wang X, et al. Growth of directly transferrable In2O3 nanowire mats for transparent thin-film transistors applications. Adv Mater, 2011, 23, 771 doi: 10.1002/adma.201003474
[19]
Luo T, Liang B, Liu Z, et al. Single-GaSb-nanowire-based room temperature photodetectors with broad spectral response. Sci Bull, 2015, 60, 101 doi: 10.1007/s11434-014-0687-6
[20]
Duan T, Lou Z, Shen G. Electrical transport and photoresponse properties of single-crystalline Cd3As2 nanowires. Sci China-Phys Mech Astron, 2015, 58, 027801 doi: 10.1007/s11433-014-5629-4
[21]
Li L, Lou Z, Shen G. Flexible broadband image sensors with SnS quantum dots/Zn2SnO4 nanowires hybrid nanostructures. Adv Funct Mater, 2018, 18, 1705389 doi: 10.1002/adfm.201705389
[22]
Chen S, Lou Z, Chen D, et al. Printble Zn2GeO4 microwires based flexible photodetectors with tunable photorespone. Adv Mater Technol, 2018, 3, 1800050 doi: 10.1002/admt.201800050
[23]
Lou Z, Li L, Shen G. InGaO3(ZnO) superlattice nanowires for high performance ultraviolet photodetectors. Adv Electron Mater, 2015, 1, 1500054 doi: 10.1002/aelm.201500054
[24]
Lou Z, Yang X L, Chen H R, et al. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J Semicond, 2018, 39(2), 024002 doi: 10.1088/1674-4926/39/2/024002
[25]
Chen G, Liang B, Liu X, et al. High-performance hybrid phenyl-C61-butyric acid methyl ester/Cd3P2 nanowire ultraviolet-visible-near infrared photodetectors. ACS Nano, 2014, 8, 787 doi: 10.1021/nn405442z
[26]
Lou Z, Li L, Shen G. Ultraviolet/visible photodetectors with ultrafast, high photosensitivity based on 1D ZnS/CdS heterostructures. Nanoscale, 2016, 8, 5219 doi: 10.1039/C5NR08792A
[27]
Chai R, Lou Z, Shen G. Highly flexible self-powered photodetectors based on core-shell Sb/CdS nanowires. J Mater Chem C, 2019, 7, 4581 doi: 10.1039/c8tc06383d
[28]
Liu Z, Luo T, Liang B, et al. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res, 2013, 6, 775 doi: 10.1007/s12274-013-0356-0
[29]
Gong X, Tong M, Xia Y, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm. Science, 2009, 325, 1665 doi: 10.1126/science.1176706
[30]
Miao J, Hu W, Guo N, et al. Single InAs nanowire room temperature near-infrared photodetectors. ACS Nano, 2014, 8, 3628 doi: 10.1021/nn500201g
[31]
Ouyang B, Zhang K, Yang Y, et al. Photocurrent polarity controlled by light wavelength in self-powered ZnO nanowires/SnS photodetector system. iScience, 2018, 1, 16 doi: 10.1016/j.isci.2018.01.002
[32]
Chen G, Liang B, Liu Z, et al. High performance rigid and flexible visible-light photodetectors based on aligned X(In,Ga)P nanowire arrays. J Mater Chem C, 2014, 2, 1270 doi: 10.1039/C3TC31507J
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4009 Times PDF downloads: 76 Times Cited by: 0 Times

    History

    Received: 05 March 2020 Revised: 10 March 2020 Online: Accepted Manuscript: 17 March 2020Uncorrected proof: 19 March 2020Published: 10 April 2020

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guozhen Shen, Haoran Chen, Zheng Lou. Growth of aligned SnS nanowire arrays for near infrared photodetectors[J]. Journal of Semiconductors, 2020, 41(4): 042602. doi: 10.1088/1674-4926/41/4/042602 G Z Shen, H R Chen, Z Lou, Growth of aligned SnS nanowire arrays for near infrared photodetectors[J]. J. Semicond., 2020, 41(4): 042602. doi: 10.1088/1674-4926/41/4/042602.Export: BibTex EndNote
      Citation:
      Guozhen Shen, Haoran Chen, Zheng Lou. Growth of aligned SnS nanowire arrays for near infrared photodetectors[J]. Journal of Semiconductors, 2020, 41(4): 042602. doi: 10.1088/1674-4926/41/4/042602

      G Z Shen, H R Chen, Z Lou, Growth of aligned SnS nanowire arrays for near infrared photodetectors[J]. J. Semicond., 2020, 41(4): 042602. doi: 10.1088/1674-4926/41/4/042602.
      Export: BibTex EndNote

      Growth of aligned SnS nanowire arrays for near infrared photodetectors

      doi: 10.1088/1674-4926/41/4/042602
      More Information
      • Corresponding author: gzshen@semi.ac.cn
      • Received Date: 2020-03-05
      • Revised Date: 2020-03-10
      • Published Date: 2020-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return