SEMICONDUCTOR PHYSICS

Calculation of surface acoustic waves in a multilayered piezoelectric structure

Zuwei Zhang1, 2, 3, , Zhiyu Wen1, 2, 3 and Jing Hu1, 2, 3

+ Author Affiliations

 Corresponding author: Zhang Zuwei, Email:zhangzuwei00@163.com

PDF

Abstract: The propagation properties of the surface acoustic waves (SAWs) in a ZnO-SiO2-Si multilayered piezoelectric structure are calculated by using the recursive asymptotic method. The phase velocities and the electro-mechanical coupling coefficients for the Rayleigh wave and the Love wave in the different ZnO-SiO2-Si structures are calculated and analyzed. The Love mode wave is found to be predominantly generated since the c-axis of the ZnO film is generally perpendicular to the substrate. In order to prove the calculated results, a Love mode SAW device based on the ZnO-SiO2-Si multilayered structure is fabricated by micromachining, and its frequency responses are detected. The experimental results are found to be mainly consistent with the calculated ones, except for the slightly larger velocities induced by the residual stresses produced in the fabrication process of the films. The deviation of the experimental results from the calculated ones is reduced by thermal annealing.

Key words: SAWRAMmultilayered structure



[1]
Fu Y Q, Luo J K, Du X Y, et al. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications:a review. Sensors and Actuators B:Chemical, 2010, 143:606 doi: 10.1016/j.snb.2009.10.010
[2]
Krishnamoorthy S, Iliadis A A. Properties of high sensitivity ZnO surface acoustic wave sensorson SiO2/(100) Si substrates. Solid-State Electron, 2008, 52:1710 doi: 10.1016/j.sse.2008.06.039
[3]
Horrillo M C, Fernandez M J, Fontecha J L, et al. Optimization of SAW sensors with a structure ZnO-SiO2-Si to detect volatile organic compounds. Sensors and Actuators B:Chemical, 2006, 118:356 doi: 10.1016/j.snb.2006.04.050
[4]
Krishnamoorthy S, Iliadis A A, Beic T, et al. An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor. Biosensor and Bioelectronics, 2008, 24:313 doi: 10.1016/j.bios.2008.04.011
[5]
Adler E L. Matrix method applied to acoustic waves in multilayers. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37:485 doi: 10.1109/58.63103
[6]
Rokhlin S I, Wang L. Ultrasonic waves in layered anisotropic media:characterization of multidirectional composites. International Journal of Solids and Structures, 2002, 39:5529 doi: 10.1016/S0020-7683(02)00500-0
[7]
Wang L, Rokhlin S I. A compliance/stiffness matrix formulation of general Green's function and effective permittivity for piezoelectric multilayers. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51:453 doi: 10.1109/TUFFC.2004.1295431
[8]
Wang L, Rokhlin S I. Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51:1060 doi: 10.1109/TUFFC.2004.1334839
[9]
Fahmy A H, Adler E L. Propagation of acoustic waves in multilayers:a matrix description. Appl Phys Lett, 1973, 20:495
[10]
Nakahata H, Hachigo A, Higaki K, et al. Theoretical study on SAW characteristics of layered structures including a diamond layer. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 2:362
[11]
Vispute R D, Talyansky V, Trajanovic Z, et al. High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for Ⅲ-Ⅴ nitrides. Appl Phys Lett, 1997, 70:2735 doi: 10.1063/1.119006
[12]
Krishnamoorthy S, Iliadis A A. Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices. Solid-State Electron, 2006, 50:1113 doi: 10.1016/j.sse.2006.04.033
Fig. 1.  Schematic of the ZnO–SiO$_{2}$–Si multilayered structure.

Fig. 2.  Calculated $H_{\rm ZnO}/\lambda$ dependence of phase velocity for a Rayleigh wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm ZnO}$ is set to be 3 $\mu$m and $H_{\rm SiO_2}$ is set to range from 2 to 10 $\mu $m.

Fig. 3.  Calculated $H_{\rm ZnO}/\lambda$ dependence of electromechanical coupling coefficients for a Rayleigh wave in ZnO–SiO$_{2}$–Si structure when $H_{\rm ZnO} $ is set to be 3 $\mu$m and $H_{\rm SiO_2}$ is set to range from 2 to 10 $\mu$m.

Fig. 4.  Calculated $H_{\rm SiO_2}/\lambda$ dependence of phase velocity for the Rayleigh wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm SiO_2}$ is set to be 2 $\mu$m and $H_{\rm ZnO}$ is set to range from 3 to 10 $\mu$m.

Fig. 5.  Calculated $H_{\rm SiO_2}/\lambda$ dependence of electromechanical coupling coefficients for the Rayleigh wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm SiO_2}$ is set to be 2 $\mu$m and $H_{\rm ZnO}$ is set to range from 3 to 10 $\mu$m.

Fig. 6.  Calculated $H_{\rm ZnO}/\lambda$ dependence of phase velocity for the Love wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm ZnO}$ is set to be 3 $\mu$m and $H_{\rm SiO_2}$ is set to range from 2 to 10 $\mu$m.

Fig. 7.  Calculated $H_{\rm ZnO}/\lambda$ dependence of electromechanical coupling coefficients for the Love wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm ZnO}$ is set to be 3 $\mu$m and $H_{\rm SiO_2}$ is set to range from 2 to 10 $\mu$m.

Fig. 8.  Calculated $H_{\rm SiO_2}/\lambda$ dependence of phase velocity for the Love wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm SiO_2}$ is set to be 2 $\mu$m and $H_{\rm ZnO}$ is set to range from 3 to 10 $\mu $m.

Fig. 9.  Calculated $H_{\rm SiO_2}/\lambda$ dependence of electromechanical coupling coefficients for the Love wave in a ZnO–SiO$_{2}$–Si structure when $H_{\rm SiO_2}$ is set to be 2 $\mu$m and $H_{\rm ZnO} $ is set to range from 3 to 10 $\mu$m.

Fig. 10.  XRD pattern of the ZnO film.

Fig. 11.  Pictures of the fabricated SAW device.

Fig. 12.  Frequency responses of the device (a) before and (b) after annealing.

Table 1.   Material properties of the layers.

Table 2.   Properties of the fabricated Love mode device.

[1]
Fu Y Q, Luo J K, Du X Y, et al. Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications:a review. Sensors and Actuators B:Chemical, 2010, 143:606 doi: 10.1016/j.snb.2009.10.010
[2]
Krishnamoorthy S, Iliadis A A. Properties of high sensitivity ZnO surface acoustic wave sensorson SiO2/(100) Si substrates. Solid-State Electron, 2008, 52:1710 doi: 10.1016/j.sse.2008.06.039
[3]
Horrillo M C, Fernandez M J, Fontecha J L, et al. Optimization of SAW sensors with a structure ZnO-SiO2-Si to detect volatile organic compounds. Sensors and Actuators B:Chemical, 2006, 118:356 doi: 10.1016/j.snb.2006.04.050
[4]
Krishnamoorthy S, Iliadis A A, Beic T, et al. An interleukin-6 ZnO/SiO2/Si surface acoustic wave biosensor. Biosensor and Bioelectronics, 2008, 24:313 doi: 10.1016/j.bios.2008.04.011
[5]
Adler E L. Matrix method applied to acoustic waves in multilayers. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 1990, 37:485 doi: 10.1109/58.63103
[6]
Rokhlin S I, Wang L. Ultrasonic waves in layered anisotropic media:characterization of multidirectional composites. International Journal of Solids and Structures, 2002, 39:5529 doi: 10.1016/S0020-7683(02)00500-0
[7]
Wang L, Rokhlin S I. A compliance/stiffness matrix formulation of general Green's function and effective permittivity for piezoelectric multilayers. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51:453 doi: 10.1109/TUFFC.2004.1295431
[8]
Wang L, Rokhlin S I. Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51:1060 doi: 10.1109/TUFFC.2004.1334839
[9]
Fahmy A H, Adler E L. Propagation of acoustic waves in multilayers:a matrix description. Appl Phys Lett, 1973, 20:495
[10]
Nakahata H, Hachigo A, Higaki K, et al. Theoretical study on SAW characteristics of layered structures including a diamond layer. IEEE Trans Ultrasonics, Ferroelectrics, and Frequency Control, 1995, 2:362
[11]
Vispute R D, Talyansky V, Trajanovic Z, et al. High quality crystalline ZnO buffer layers on sapphire (001) by pulsed laser deposition for Ⅲ-Ⅴ nitrides. Appl Phys Lett, 1997, 70:2735 doi: 10.1063/1.119006
[12]
Krishnamoorthy S, Iliadis A A. Development of high frequency ZnO/SiO2/Si Love mode surface acoustic wave devices. Solid-State Electron, 2006, 50:1113 doi: 10.1016/j.sse.2006.04.033
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1920 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 27 May 2012 Revised: 16 July 2012 Online: Published: 01 January 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zuwei Zhang, Zhiyu Wen, Jing Hu. Calculation of surface acoustic waves in a multilayered piezoelectric structure[J]. Journal of Semiconductors, 2013, 34(1): 012002. doi: 10.1088/1674-4926/34/1/012002 Z W Zhang, Z Y Wen, J Hu. Calculation of surface acoustic waves in a multilayered piezoelectric structure[J]. J. Semicond., 2013, 34(1): 012002. doi: 10.1088/1674-4926/34/1/012002.Export: BibTex EndNote
      Citation:
      Zuwei Zhang, Zhiyu Wen, Jing Hu. Calculation of surface acoustic waves in a multilayered piezoelectric structure[J]. Journal of Semiconductors, 2013, 34(1): 012002. doi: 10.1088/1674-4926/34/1/012002

      Z W Zhang, Z Y Wen, J Hu. Calculation of surface acoustic waves in a multilayered piezoelectric structure[J]. J. Semicond., 2013, 34(1): 012002. doi: 10.1088/1674-4926/34/1/012002.
      Export: BibTex EndNote

      Calculation of surface acoustic waves in a multilayered piezoelectric structure

      doi: 10.1088/1674-4926/34/1/012002
      More Information
      • Corresponding author: Zhang Zuwei, Email:zhangzuwei00@163.com
      • Received Date: 2012-05-27
      • Revised Date: 2012-07-16
      • Published Date: 2013-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return