SEMICONDUCTOR MATERIALS

The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

J.V. Thombare1, , M.C. Rath2, S.H. Han3 and V.J. Fulari1,

+ Author Affiliations

 Corresponding author: J. V. Thombare, vijayfulari@gmail.com; V. J. Fulari, jagannaththombare@gmail.com

PDF

Abstract: Polypyrrole (PPy) thin films were deposited on stainless steel and ITO coated glass substrate at a constant deposition potential of 0.8 V versus saturated calomel electrode (SCE) by using the electrochemical polymerization method. The PPy thin films were deposited at room temperature at various monomer concentrations ranging from 0.1 M to 0.3 M pyrrole. The structural and optical properties of the polypyrrole thin films were investigated using an X-ray diffractometer (XRD), FTIR spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) spectroscopy. The XRD results show that polypyrrole thin films have a semi crystalline structure. Higher monomer concentration results in a slight increase of crystallinity. The polypyrrole thin films deposited at higher monomer concentration exhibit high visible absorbance. The refractive indexes of the polypyrrole thin films are found to be in the range of 1 to 1.3 and vary with monomer concentration as well as wavelength. The extinction coefficient decreases slightly with monomer concentration. The electrochemically synthesized polypyrrole thin film shows optical band gap energy of 2.14 eV.

Key words: polypyrroleelectrochemical polymerization methodstructureoptical properties



[1]
Liang G R, Cui T H, Varahramyan K. Electrical characteristics of diodes fabricated with organic semiconductors. Microelectron Eng, 2003, 65:279 doi: 10.1016/S0167-9317(02)00901-2
[2]
Lonergan M C. A tunable diode based on an inorganic semiconductor conjugated polymer interface. Science, 1997, 278:2103 doi: 10.1126/science.278.5346.2103
[3]
Saxena V, Santhanam K S V. Junction properties of Schottky diode with chemically prepared copolymer having hexylthiophene and cyclohexylthiophene units. Curr Appl Phys, 2003, 3:227 doi: 10.1016/S1567-1739(02)00220-1
[4]
Singh R, Narula A K. Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes. Appl Phys Lett, 1997, 71:2845 doi: 10.1063/1.120151
[5]
Burroughs J H, Bradley D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347:539 doi: 10.1038/347539a0
[6]
Pandey S S, Misra S C K, Malhotra B D, et al. Some recent studies on metal/polyaniline Schottky devices. J Appl Polym Sci, 1992, 44:911 doi: 10.1002/app.1992.070440519
[7]
Kudoh Y, Tsuchiya S, Kojima T, et al. An aluminum solid electrolytic capacitor with an electroconducting-polymer electrolyte. Synth Met, 1991, 41:1133 doi: 10.1016/0379-6779(91)91570-Z
[8]
Rudge A, Davey J, Raistrick I, et al. Conducting polymers as active materials in electrochemical capacitors. J Power Sources, 1994, 47:89 doi: 10.1016/0378-7753(94)80053-7
[9]
Aydogan S, Saglam M, Turut A. Electrical properties of polypyrrole/p-InP structure. J Polym Sci Pol Phys, 2006, 44:1572 doi: 10.1002/(ISSN)1099-0488
[10]
Berggren M, Inganas O, Gustafsson G, et al. Light-emitting diodes with variable colours from polymer blends. Nature, 1994, 372:444 doi: 10.1038/372444a0
[11]
Makris T, Dracopoulos V, Stergiopoulos T, et al. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta, 2011, 56:2004 doi: 10.1016/j.electacta.2010.11.076
[12]
Cui C J, Wu G M, Yang H Y, et al. A new high-performance cathode material for rechargeable lithium-ion batteries:polypyrrole/vanadium oxide nanotubes. Electrochim Acta, 2010, 55:8870 doi: 10.1016/j.electacta.2010.07.087
[13]
Iftikhar F J, Baker P G L, Baleg A M, et al. Modulation of the interfacial electrochemistry of surfactant-functionalised polypyrrole chemical sensor systems. Electrochim Acta, 2011, 56:5214 doi: 10.1016/j.electacta.2011.03.034
[14]
DaSilva A J C, Nogueira F A R, Tonholo J, et al. Dual-type electrochromic device based on polypyrrole and polythiophene derivatives. Sol Energ Mat Sol C, 2011, 95:2255 doi: 10.1016/j.solmat.2011.03.032
[15]
Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun, 2008, 10:268 doi: 10.1016/j.elecom.2007.12.004
[16]
Wang B, Zhao J, Cui C, et al. Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1, 4-bis(2-thienyl)naphthalene and pyrene. Opt Mater, 2012, 34:1095 doi: 10.1016/j.optmat.2012.01.009
[17]
Yakuphanoglu F, Aydin M E. Effects of polymerization medium on electrical conductivity and optical properties of organic semiconductor-based polypyrrole. Polym Eng Sci, 2007, 47:1016 doi: 10.1002/(ISSN)1548-2634
[18]
Xu P, Han X, Wang C, et al. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J Phys Chem B, 2008, 112:2775 doi: 10.1021/jp710259v
[19]
Antony M J, Jayakannan M. Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres. J Phys Chem B, 2007, 111:12772 doi: 10.1007/978-3-319-47455-7_6
[20]
Alexander L E. X-ray diffraction methods in polymer science. New York:John Wiley, 1969:379 https://global.oup.com/academic/product/methods-of-x-ray-and-neutron-scattering-in-polymer-science-9780195113211
[21]
Cheah K, Forsyth M, Truong V T. An XRD/XPS approach to structural change in conducting Ppy. Synth Met, 1999, 101:19 doi: 10.1016/S0379-6779(98)00790-5
[22]
Lemon P, Haigh J. The evolution of nodular polypyrrole morphology during aqueous electrolytic deposition:influence of electrolyte gas discharge. Mater Res Bull, 1999, 34:665 doi: 10.1016/S0025-5408(99)00069-0
[23]
Kubacka D, Krysinski P, Blanchard G J, et al. Toluene-filled polypyrrole microvessels:entrapment and dynamics of encapsulated perylene. J Phys Chem B, 2010, 114:14890 doi: 10.1021/jp107316u
[24]
Mavinakuli P, Wei S, Wang Q, et al. Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. J Phys Chem C, 2010, 114:3874 doi: 10.1021/jp911766y
[25]
Vasilyeva S V, Vorotyntsev M A, Bezverkhyy I, et al. Synthesis and characterization of palladium nanoparticle/polypyrrole composites. J Phys Chem C, 2008, 112:19878 doi: 10.1021/jp805423t
[26]
Jiang J, Ai L, Li L. Multifunctional polypyrrole/strontium hexaferrite composite microspheres:preparation, characterization, and properties. J Phys Chem B, 2009, 113:1376 doi: 10.1021/jp808270n
[27]
Taranekar P, Fan X, Advincula R. Distinct surface morphologies of electropolymerized polymethylsiloxane network polypyrrole and comonomer films. Langmuir, 2002, 18:7943 doi: 10.1021/la025517y
[28]
Yang C, Liu P. Water dispersibility and temperature dependence of electrical conductivity of conductive polypyrrole nanoparticles doped with fulvic acids. J Chem Eng Data, 2011, 56:899 doi: 10.1021/je100751n
[29]
Song H K, Palmore G T R. Conductive polypyrrole via enzyme catalysis. J Phys Chem B, 2005, 109:19278 doi: 10.1021/jp0514978
[30]
Zhou J P, Chai C L, Yang S Y, et al. Photoluminescence behaviors from stoichiometric gadolinium oxide films. J Appl Phys, 2003, 94:4414 doi: 10.1063/1.1606862
[31]
Chandra S, Annapoorni S, Singh F, et al. Low temperature resistivity study of nanostructured polypyrrole films under electronic excitations. Nucl Instrum Meth B, 2010, 268:62 doi: 10.1016/j.nimb.2009.09.060
[32]
Erdei G, Berze N, Peter A, et al. Refractive index measurement of cerium-doped LuxY2-xSiO5 single crystal. Opt Mater, 2012, 34:781 doi: 10.1016/j.optmat.2011.11.006
[33]
Manzani D, Fernandes R G, Messaddeq Y, et al. Thermal, struc-tural and optical properties of new tungsten lead-pyrophosphate glasses. Opt Mater, 2011, 33:1862 doi: 10.1016/j.optmat.2011.02.041
[34]
Maia L J Q, Fick J, Hernandes A C, et al. Optical properties of amorphous, erbium-doped yttrium alumino-borate thin films. Opt Mater, 2012, 34:665 doi: 10.1016/j.optmat.2011.09.014
[35]
Rajan G, Gopchandran K G. Engineering of luminescence from Gd2O3:Eu3+ nanophosphors by pulsed laser deposition. Opt Mater, 2009, 32:121 doi: 10.1016/j.optmat.2009.06.017
[36]
Dahshan A. Optical and other physical characteristics of Ge-Se-Cd thin films. Opt Mater, 2009, 32:247 doi: 10.1016/j.optmat.2009.07.017
Fig. 1.  XRD pattern for electrochemically synthesized polypyrrole thin film at 0.3 M pyrrole concentration

Fig. 2.  FTIR spectroscopy of electrochemically synthesized polypyrrole thin films at (a) 0.1 M pyrrole, (b) 0.2 M pyrrole and (c) 0.3 M pyrrole concentration

Fig. 3.  Surface morphology of electrochemically synthesized polypyrrole thin films at (a) 0.1 M pyrrole, (b) 0.2 M pyrrole and (c) 0.3 M pyrrole concentration

Fig. 4.  Schematic presentation of formation of cauliflowers on the substrate at (a) 0.1 M pyrrole concentration, formation of well aligned cauliflowers, (b) 0.2 M pyrrole concentration, formation of periodic and high densely cauliflowers, and (c) 0.3 M pyrrole concentration

Fig. 5.  UV-vis absorption of electrochemically synthesized polypyrrole thin films at (a) 0.1 M pyrrole, (b) 0.2 M pyrrole and (c) 0.3 M pyrrole concentration

Fig. 6.  Optical band gap energy of electrochemically synthesized polypyrrole thin film at (a) 0.1 M pyrrole, (b) 0.2 M pyrrole and (c) 0.3 M pyrrole concentration

Fig. 7.  Refractive index profile of electrochemically synthesized polypyrrole thin films at (a) 0.1 M pyrrole, (b) 0.2 M pyrrole and (c) 0.3 M pyrrole concentration

Fig. 8.  Extinction coefficient of electrochemically synthesized polypyrrole thin films at (a) 0.1 M pyrrole, (b) 0.2 M pyrrole and (c) 0.3 M pyrrole concentration

[1]
Liang G R, Cui T H, Varahramyan K. Electrical characteristics of diodes fabricated with organic semiconductors. Microelectron Eng, 2003, 65:279 doi: 10.1016/S0167-9317(02)00901-2
[2]
Lonergan M C. A tunable diode based on an inorganic semiconductor conjugated polymer interface. Science, 1997, 278:2103 doi: 10.1126/science.278.5346.2103
[3]
Saxena V, Santhanam K S V. Junction properties of Schottky diode with chemically prepared copolymer having hexylthiophene and cyclohexylthiophene units. Curr Appl Phys, 2003, 3:227 doi: 10.1016/S1567-1739(02)00220-1
[4]
Singh R, Narula A K. Junction properties of aluminum/polypyrrole (polypyrrole derivatives) Schottky diodes. Appl Phys Lett, 1997, 71:2845 doi: 10.1063/1.120151
[5]
Burroughs J H, Bradley D C, Brown A R, et al. Light-emitting diodes based on conjugated polymers. Nature, 1990, 347:539 doi: 10.1038/347539a0
[6]
Pandey S S, Misra S C K, Malhotra B D, et al. Some recent studies on metal/polyaniline Schottky devices. J Appl Polym Sci, 1992, 44:911 doi: 10.1002/app.1992.070440519
[7]
Kudoh Y, Tsuchiya S, Kojima T, et al. An aluminum solid electrolytic capacitor with an electroconducting-polymer electrolyte. Synth Met, 1991, 41:1133 doi: 10.1016/0379-6779(91)91570-Z
[8]
Rudge A, Davey J, Raistrick I, et al. Conducting polymers as active materials in electrochemical capacitors. J Power Sources, 1994, 47:89 doi: 10.1016/0378-7753(94)80053-7
[9]
Aydogan S, Saglam M, Turut A. Electrical properties of polypyrrole/p-InP structure. J Polym Sci Pol Phys, 2006, 44:1572 doi: 10.1002/(ISSN)1099-0488
[10]
Berggren M, Inganas O, Gustafsson G, et al. Light-emitting diodes with variable colours from polymer blends. Nature, 1994, 372:444 doi: 10.1038/372444a0
[11]
Makris T, Dracopoulos V, Stergiopoulos T, et al. A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta, 2011, 56:2004 doi: 10.1016/j.electacta.2010.11.076
[12]
Cui C J, Wu G M, Yang H Y, et al. A new high-performance cathode material for rechargeable lithium-ion batteries:polypyrrole/vanadium oxide nanotubes. Electrochim Acta, 2010, 55:8870 doi: 10.1016/j.electacta.2010.07.087
[13]
Iftikhar F J, Baker P G L, Baleg A M, et al. Modulation of the interfacial electrochemistry of surfactant-functionalised polypyrrole chemical sensor systems. Electrochim Acta, 2011, 56:5214 doi: 10.1016/j.electacta.2011.03.034
[14]
DaSilva A J C, Nogueira F A R, Tonholo J, et al. Dual-type electrochromic device based on polypyrrole and polythiophene derivatives. Sol Energ Mat Sol C, 2011, 95:2255 doi: 10.1016/j.solmat.2011.03.032
[15]
Sharma R K, Rastogi A C, Desu S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor. Electrochem Commun, 2008, 10:268 doi: 10.1016/j.elecom.2007.12.004
[16]
Wang B, Zhao J, Cui C, et al. Electrochemical synthesis, characterization and electrochromic properties of a copolymer based on 1, 4-bis(2-thienyl)naphthalene and pyrene. Opt Mater, 2012, 34:1095 doi: 10.1016/j.optmat.2012.01.009
[17]
Yakuphanoglu F, Aydin M E. Effects of polymerization medium on electrical conductivity and optical properties of organic semiconductor-based polypyrrole. Polym Eng Sci, 2007, 47:1016 doi: 10.1002/(ISSN)1548-2634
[18]
Xu P, Han X, Wang C, et al. Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J Phys Chem B, 2008, 112:2775 doi: 10.1021/jp710259v
[19]
Antony M J, Jayakannan M. Amphiphilic azobenzenesulfonic acid anionic surfactant for water-soluble, ordered, and luminescent polypyrrole nanospheres. J Phys Chem B, 2007, 111:12772 doi: 10.1007/978-3-319-47455-7_6
[20]
Alexander L E. X-ray diffraction methods in polymer science. New York:John Wiley, 1969:379 https://global.oup.com/academic/product/methods-of-x-ray-and-neutron-scattering-in-polymer-science-9780195113211
[21]
Cheah K, Forsyth M, Truong V T. An XRD/XPS approach to structural change in conducting Ppy. Synth Met, 1999, 101:19 doi: 10.1016/S0379-6779(98)00790-5
[22]
Lemon P, Haigh J. The evolution of nodular polypyrrole morphology during aqueous electrolytic deposition:influence of electrolyte gas discharge. Mater Res Bull, 1999, 34:665 doi: 10.1016/S0025-5408(99)00069-0
[23]
Kubacka D, Krysinski P, Blanchard G J, et al. Toluene-filled polypyrrole microvessels:entrapment and dynamics of encapsulated perylene. J Phys Chem B, 2010, 114:14890 doi: 10.1021/jp107316u
[24]
Mavinakuli P, Wei S, Wang Q, et al. Polypyrrole/silicon carbide nanocomposites with tunable electrical conductivity. J Phys Chem C, 2010, 114:3874 doi: 10.1021/jp911766y
[25]
Vasilyeva S V, Vorotyntsev M A, Bezverkhyy I, et al. Synthesis and characterization of palladium nanoparticle/polypyrrole composites. J Phys Chem C, 2008, 112:19878 doi: 10.1021/jp805423t
[26]
Jiang J, Ai L, Li L. Multifunctional polypyrrole/strontium hexaferrite composite microspheres:preparation, characterization, and properties. J Phys Chem B, 2009, 113:1376 doi: 10.1021/jp808270n
[27]
Taranekar P, Fan X, Advincula R. Distinct surface morphologies of electropolymerized polymethylsiloxane network polypyrrole and comonomer films. Langmuir, 2002, 18:7943 doi: 10.1021/la025517y
[28]
Yang C, Liu P. Water dispersibility and temperature dependence of electrical conductivity of conductive polypyrrole nanoparticles doped with fulvic acids. J Chem Eng Data, 2011, 56:899 doi: 10.1021/je100751n
[29]
Song H K, Palmore G T R. Conductive polypyrrole via enzyme catalysis. J Phys Chem B, 2005, 109:19278 doi: 10.1021/jp0514978
[30]
Zhou J P, Chai C L, Yang S Y, et al. Photoluminescence behaviors from stoichiometric gadolinium oxide films. J Appl Phys, 2003, 94:4414 doi: 10.1063/1.1606862
[31]
Chandra S, Annapoorni S, Singh F, et al. Low temperature resistivity study of nanostructured polypyrrole films under electronic excitations. Nucl Instrum Meth B, 2010, 268:62 doi: 10.1016/j.nimb.2009.09.060
[32]
Erdei G, Berze N, Peter A, et al. Refractive index measurement of cerium-doped LuxY2-xSiO5 single crystal. Opt Mater, 2012, 34:781 doi: 10.1016/j.optmat.2011.11.006
[33]
Manzani D, Fernandes R G, Messaddeq Y, et al. Thermal, struc-tural and optical properties of new tungsten lead-pyrophosphate glasses. Opt Mater, 2011, 33:1862 doi: 10.1016/j.optmat.2011.02.041
[34]
Maia L J Q, Fick J, Hernandes A C, et al. Optical properties of amorphous, erbium-doped yttrium alumino-borate thin films. Opt Mater, 2012, 34:665 doi: 10.1016/j.optmat.2011.09.014
[35]
Rajan G, Gopchandran K G. Engineering of luminescence from Gd2O3:Eu3+ nanophosphors by pulsed laser deposition. Opt Mater, 2009, 32:121 doi: 10.1016/j.optmat.2009.06.017
[36]
Dahshan A. Optical and other physical characteristics of Ge-Se-Cd thin films. Opt Mater, 2009, 32:247 doi: 10.1016/j.optmat.2009.07.017
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2435 Times PDF downloads: 14 Times Cited by: 0 Times

    History

    Received: 19 April 2013 Revised: 20 May 2013 Online: Published: 01 October 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films[J]. Journal of Semiconductors, 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002 J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films[J]. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002.Export: BibTex EndNote
      Citation:
      J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films[J]. Journal of Semiconductors, 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002

      J.V. Thombare, M.C. Rath, S.H. Han, V.J. Fulari. The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films[J]. J. Semicond., 2013, 34(10): 103002. doi: 10.1088/1674-4926/34/10/103002.
      Export: BibTex EndNote

      The influence of monomer concentration on the optical properties of electrochemically synthesized polypyrrole thin films

      doi: 10.1088/1674-4926/34/10/103002
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return