SEMICONDUCTOR DEVICES

Growth and fabrication of a mid-wavelength infrared focal plane array based on type-Ⅱ InAs/GaSb superlattices

Guowei Wang1, , Wei Xiang1, Yingqiang Xu1, Liang Zhang2, Zhenyu Peng2, Yanqiu Lü2, Junjie Si2, Juan Wang1, Junliang Xing1, Zhengwei Ren1 and Zhichuan Niu1

+ Author Affiliations

 Corresponding author: Wang Guowei, Email:wangguowei@semi.ac.cn

PDF

Abstract: We present the fabrication of a mid-wavelength infrared focal plane array (FPA) based on type-Ⅱ InAs/GaSb strain layer superlattices (SLs). The detectors contain a 400-period 8 ML InAs/8 ML GaSb SL active layer, which is grown by solid source molecular beam epitaxy on GaSb (100) N type substrates. Lattice mismatch between the superlattices and GaSb substrate achieves 148.9 ppm. The full width at half maximum of the first order satellite peak from X-ray diffraction was 28 arcsec. Single element detectors and FPA with a 128×128 pixels were fabricated using citric acid based solution wet chemical etching. Chemical and physical passivation effectively reduces the surface leakage and this process was characterized by Ⅰ-Ⅴ measurement. The devices showed a 50% cut-off wavelength of 4.73 μm at 77 K. The photodiode exhibited an R0A of 103 Ω· cm2. The FPA was characterized with an integration time of 0.5 ms and F/2.0 optics at 77 K and the average blackbody detectivity of the detectors is 2.01×109 cm·Hz1/2/W.

Key words: superlatticesGaSbfocal plane arrayinfrared detector



[1]
Smith D L, Mailhiot C. Theory of semiconductor superlattice electronic structure. Rev Mod Phys, 1990, 62(1):173 doi: 10.1103/RevModPhys.62.173
[2]
Gautam N, Kim H S, Kutty M N, et al. Performance improvement of longwave infrared photodetector based on type-Ⅱ InAs/GaSb superlattices using unipolar current blocking layers. Appl Phys Lett, 2010, 96(23):231107 doi: 10.1063/1.3446967
[3]
Nguyen B M, Hoffman D, Huang E K W, et al. Background limited long wavelength infrared type-Ⅱ InAs/GaSb superlattice photodiodes operating at 110 K. Appl Phys Lett, 2008, 93(12):123502 doi: 10.1063/1.2978330
[4]
Delaunay P Y, Nguyen B M, Hoffman D, et al. Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices. IEEE J Quant Electron, 2009, 45(1/2):157
[5]
Huang E K W, Hoffman D, Nguyen B M, et al. Surface leakage reduction in narrow band gap type-Ⅱ antimonide-based superlattice photodiodes. Appl Phys Lett, 2009, 94(5):053506 doi: 10.1063/1.3078282
[6]
Hill C J, Soibel A, Keo S A, et al. Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures. Infrared Phys Technol, 2009, 52(6):348 doi: 10.1016/j.infrared.2009.09.007
[7]
Cabanski W, Munzberg M, Rode W, et al. Third generation focal plane array IR detection modules and applications. Proc SPIE, 2005, 5783:340 doi: 10.1117/12.605818
[8]
Walther M, Rehm R, Fleissner J, et al. InAs/GaSb type-Ⅱ short-period superlattices for advanced single and dual-color focal plane arrays. Proc SPIE, 2007, 6542:654206 doi: 10.1117/12.719227
[9]
Lew A Y, Zuo S L, Yu E T, et al. Anisotropy and growth-sequence dependence of atomic-scale interface structure in InAs/Ga1-xInxSb superlattices. Appl Phys Lett, 1997, 70(1):75 doi: 10.1063/1.119311
[10]
Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-Ⅱ InAs/GaSb superlattices for mid-infrared detection. J Cryst Growth, 2005, 274(1/2):6
[11]
Aifer E H, Jackson E M, Bennett B R, et al. Suppression of bulk defects in antimonide superlattice infrared photodiodes. In: Wehrspohn R B, Marz R, Noda S, et al. ed. Materials and devices for optoelectronics and microphotonics. Materials Research Society: Warrendale, 2002: 275
[12]
Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-Ⅱ superlattices for mid-infrared detectors. Opto-Electronics Rev, 2006, 14(1):71
[13]
Sullivan G J, Ikhlassi A, Bergman J, et al. Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors. J Vac Sci Technol B, 2005, 23(3):1144 doi: 10.1116/1.1928238
[14]
Walther M, Rehm R, Schmitz J, et al. Defect density reduction in InAs/GaSb type Ⅱ superlattice focal plane array infrared detectors. Proc SPIE 2011:79451N
[15]
Bracker A S, Yang M J, Bennett B R, et al. Surface reconstruction phase diagrams for InAs, AlSb, and GaSb. J Cryst Growth, 2000, 220(4):384 doi: 10.1016/S0022-0248(00)00871-X
[16]
Chaghi R, Cervera C, Ait-Kaci H, et al. Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes. Semicond Sci Technol, 2009, 24(6):065010 doi: 10.1088/0268-1242/24/6/065010
[17]
Kim H S, Plis E, Rodriguez J B, et al. Mid-IR focal plane array based on type-Ⅱ InAs/GaSb strain layer superlattice detector with nBn design. Appl Phys Lett, 2008, 92(18):183502 doi: 10.1063/1.2920764
[18]
Kim H S, Plis E, Gautam N, et al. Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation. Appl Phys Lett, 2010, 97(14):143512 doi: 10.1063/1.3499290
[19]
Bogdanov S, Nguyen B M, Hoang A M, et al. Surface leakage current reduction in long wavelength infrared type-Ⅱ InAs/GaSb superlattice photodiodes. Appl Phys Lett, 2011, 98(18):183501 doi: 10.1063/1.3584853
[20]
Walther M, Rehm R, Fuchs F, et al. 256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices. J Electronic Materials, 2005, 34(6):722 doi: 10.1007/s11664-005-0010-z
[21]
Razeghi M, Pour S A, Huang E K, et al. Type-Ⅱ InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures. Opto-Electronics Review, 2011, 19(3):261
Fig. 1.  Surface AFM cartography 10 ×10 μm scan area of the superlattice P-on-N detector material

Fig. 2.  X-ray diffractometer $\omega$-2θ (004) scan of an InAs/GaSb superlattice diode with a total number of 400 periods and the simulation result

Fig. 3.  (a), (b) SEM image of a 45 × 45 $\mu$m2 FPA with optimized wet chemical solution etching. The surface of the FPA wet etching shows a clean surface and smooth sidewalls in (1$\overline{1}$0) and (110). (c) A corner of the mesa shows two different etching strips in two directions (1$\overline{1}$0) and (110). (d) FPA pixels with a uniform ~7 μm height indium bond

Fig. 4.  The relation between $R_{0}$A and device area in a PIN photodiode after physical and chemical passivation at 77 K

Fig. 5.  Photoresponse spectra of an MWSL InAs/GaSb superlattice photodiode at 77 K and schematic of the InAs/GaSb SL photodetector

Fig. 6.  The FPA pixel I-V measurement before being hybridized with ROICs, with dark current reaching 10$^{-4}$ A/cm$^{2}$, $R_{0}$A reached 1.5 × 10$^{3}$ $\Omega \cdot$ cm$^{2}$

Fig. 7.  (a) Thermal image taken with a 128 × 128 InAs/GaSb MWSL FPA at temperature of 77 K and integration time of 0.5 ms. (b) Picture of the FPA with AR coating and mounted on ROICs

[1]
Smith D L, Mailhiot C. Theory of semiconductor superlattice electronic structure. Rev Mod Phys, 1990, 62(1):173 doi: 10.1103/RevModPhys.62.173
[2]
Gautam N, Kim H S, Kutty M N, et al. Performance improvement of longwave infrared photodetector based on type-Ⅱ InAs/GaSb superlattices using unipolar current blocking layers. Appl Phys Lett, 2010, 96(23):231107 doi: 10.1063/1.3446967
[3]
Nguyen B M, Hoffman D, Huang E K W, et al. Background limited long wavelength infrared type-Ⅱ InAs/GaSb superlattice photodiodes operating at 110 K. Appl Phys Lett, 2008, 93(12):123502 doi: 10.1063/1.2978330
[4]
Delaunay P Y, Nguyen B M, Hoffman D, et al. Background limited performance of long wavelength infrared focal plane arrays fabricated from M-structure InAs-GaSb superlattices. IEEE J Quant Electron, 2009, 45(1/2):157
[5]
Huang E K W, Hoffman D, Nguyen B M, et al. Surface leakage reduction in narrow band gap type-Ⅱ antimonide-based superlattice photodiodes. Appl Phys Lett, 2009, 94(5):053506 doi: 10.1063/1.3078282
[6]
Hill C J, Soibel A, Keo S A, et al. Demonstration of large format mid-wavelength infrared focal plane arrays based on superlattice and BIRD detector structures. Infrared Phys Technol, 2009, 52(6):348 doi: 10.1016/j.infrared.2009.09.007
[7]
Cabanski W, Munzberg M, Rode W, et al. Third generation focal plane array IR detection modules and applications. Proc SPIE, 2005, 5783:340 doi: 10.1117/12.605818
[8]
Walther M, Rehm R, Fleissner J, et al. InAs/GaSb type-Ⅱ short-period superlattices for advanced single and dual-color focal plane arrays. Proc SPIE, 2007, 6542:654206 doi: 10.1117/12.719227
[9]
Lew A Y, Zuo S L, Yu E T, et al. Anisotropy and growth-sequence dependence of atomic-scale interface structure in InAs/Ga1-xInxSb superlattices. Appl Phys Lett, 1997, 70(1):75 doi: 10.1063/1.119311
[10]
Rodriguez J B, Christol P, Cerutti L, et al. MBE growth and characterization of type-Ⅱ InAs/GaSb superlattices for mid-infrared detection. J Cryst Growth, 2005, 274(1/2):6
[11]
Aifer E H, Jackson E M, Bennett B R, et al. Suppression of bulk defects in antimonide superlattice infrared photodiodes. In: Wehrspohn R B, Marz R, Noda S, et al. ed. Materials and devices for optoelectronics and microphotonics. Materials Research Society: Warrendale, 2002: 275
[12]
Szmulowicz F, Haugan H J, Brown G J, et al. Interfaces as design tools for short-period InAs/GaSb type-Ⅱ superlattices for mid-infrared detectors. Opto-Electronics Rev, 2006, 14(1):71
[13]
Sullivan G J, Ikhlassi A, Bergman J, et al. Molecular beam epitaxy growth of high quantum efficiency InAs/GaSb superlattice detectors. J Vac Sci Technol B, 2005, 23(3):1144 doi: 10.1116/1.1928238
[14]
Walther M, Rehm R, Schmitz J, et al. Defect density reduction in InAs/GaSb type Ⅱ superlattice focal plane array infrared detectors. Proc SPIE 2011:79451N
[15]
Bracker A S, Yang M J, Bennett B R, et al. Surface reconstruction phase diagrams for InAs, AlSb, and GaSb. J Cryst Growth, 2000, 220(4):384 doi: 10.1016/S0022-0248(00)00871-X
[16]
Chaghi R, Cervera C, Ait-Kaci H, et al. Wet etching and chemical polishing of InAs/GaSb superlattice photodiodes. Semicond Sci Technol, 2009, 24(6):065010 doi: 10.1088/0268-1242/24/6/065010
[17]
Kim H S, Plis E, Rodriguez J B, et al. Mid-IR focal plane array based on type-Ⅱ InAs/GaSb strain layer superlattice detector with nBn design. Appl Phys Lett, 2008, 92(18):183502 doi: 10.1063/1.2920764
[18]
Kim H S, Plis E, Gautam N, et al. Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation. Appl Phys Lett, 2010, 97(14):143512 doi: 10.1063/1.3499290
[19]
Bogdanov S, Nguyen B M, Hoang A M, et al. Surface leakage current reduction in long wavelength infrared type-Ⅱ InAs/GaSb superlattice photodiodes. Appl Phys Lett, 2011, 98(18):183501 doi: 10.1063/1.3584853
[20]
Walther M, Rehm R, Fuchs F, et al. 256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices. J Electronic Materials, 2005, 34(6):722 doi: 10.1007/s11664-005-0010-z
[21]
Razeghi M, Pour S A, Huang E K, et al. Type-Ⅱ InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures. Opto-Electronics Review, 2011, 19(3):261
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2307 Times PDF downloads: 26 Times Cited by: 0 Times

    History

    Received: 24 April 2013 Revised: 30 May 2013 Online: Published: 01 November 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Guowei Wang, Wei Xiang, Yingqiang Xu, Liang Zhang, Zhenyu Peng, Yanqiu Lü, Junjie Si, Juan Wang, Junliang Xing, Zhengwei Ren, Zhichuan Niu. Growth and fabrication of a mid-wavelength infrared focal plane array based on type-Ⅱ InAs/GaSb superlattices[J]. Journal of Semiconductors, 2013, 34(11): 114012. doi: 10.1088/1674-4926/34/11/114012 G W Wang, W Xiang, Y Q Xu, L Zhang, Z Y Peng, Y Lü, J J Si, J Wang, J L Xing, Z W Ren, Z C Niu. Growth and fabrication of a mid-wavelength infrared focal plane array based on type-Ⅱ InAs/GaSb superlattices[J]. J. Semicond., 2013, 34(11): 114012. doi: 10.1088/1674-4926/34/11/114012.Export: BibTex EndNote
      Citation:
      Guowei Wang, Wei Xiang, Yingqiang Xu, Liang Zhang, Zhenyu Peng, Yanqiu Lü, Junjie Si, Juan Wang, Junliang Xing, Zhengwei Ren, Zhichuan Niu. Growth and fabrication of a mid-wavelength infrared focal plane array based on type-Ⅱ InAs/GaSb superlattices[J]. Journal of Semiconductors, 2013, 34(11): 114012. doi: 10.1088/1674-4926/34/11/114012

      G W Wang, W Xiang, Y Q Xu, L Zhang, Z Y Peng, Y Lü, J J Si, J Wang, J L Xing, Z W Ren, Z C Niu. Growth and fabrication of a mid-wavelength infrared focal plane array based on type-Ⅱ InAs/GaSb superlattices[J]. J. Semicond., 2013, 34(11): 114012. doi: 10.1088/1674-4926/34/11/114012.
      Export: BibTex EndNote

      Growth and fabrication of a mid-wavelength infrared focal plane array based on type-Ⅱ InAs/GaSb superlattices

      doi: 10.1088/1674-4926/34/11/114012
      Funds:

      the National Natural Science Foundation of China 61274013

      the National Basic Research Program of China 2013CB932904

      the National Basic Research Program of China 2010CB327602

      Project supported by the National Natural Science Foundation of China (Nos. U1037602, 61274013, 61290303) and the National Basic Research Program of China (Nos. 2010CB327602, 2012CB932701, 2013CB932904)

      the National Natural Science Foundation of China 61290303

      the National Basic Research Program of China 2012CB932701

      the National Natural Science Foundation of China U1037602

      More Information
      • Corresponding author: Wang Guowei, Email:wangguowei@semi.ac.cn
      • Received Date: 2013-04-24
      • Revised Date: 2013-05-30
      • Published Date: 2013-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return