SEMICONDUCTOR MATERIALS

GaN nanopillars with a nickel nano-island mask

Zengqin Lin, Xiangqian Xiu, Shiying Zhang, Xuemei Hua, Zili Xie, Rong Zhang, Peng Chen, Ping Han and Youdou Zheng

+ Author Affiliations

 Corresponding author: Xiu Xiangqian, Email: xqxiu@nju.edu.cn

PDF

Abstract: Uniform GaN nanopillar arrays have been successfully fabricated by inductively coupled plasma etching using self-organized nickel nano-islands as the masks on GaN/sapphire. GaN nanopillars with diameters of 350 nm and densities of 2.6×108 cm-2 were demonstrated and controlled by the thickness of Ni film and the NH3 annealing time. These GaN nanopillars show improved optical properties and strain change compared to that of GaN film before ICP etching. Such structures with large-area uniformity and high density could provide additional advantages for light emission of light-emitting diodes, quality improvement of ELO regrowth, etc.

Key words: GaN nanopillarsnickel nano-islandthermal ammonia etchingmaskICPSEM



[1]
Pearton S J, Zolper J C, Shui R J, et al. GaN:processing, defects, and devices. J Appl Phys, 1999, 86:1 doi: 10.1063/1.371145
[2]
Qian F, Li Y, Gradecak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater, 2008, 7:701 doi: 10.1038/nmat2253
[3]
Zhong Z, Qian F, Wang D, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett, 2003, 3:343 doi: 10.1021/nl034003w
[4]
Tang Y B, Chen Z H, Song H S, et al. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett, 2008, 8:4191 doi: 10.1021/nl801728d
[5]
Dobrokhotov V, McIlroy D N, Norton M G, et al. Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles. J Appl Phys, 2006, 99:104302 doi: 10.1063/1.2195420
[6]
Wang X B, Song J H, Zhang F, et al. Electricity generation based on one-dimensional group-Ⅲ nitride nanomaterials. Adv Mater, 2010, 22:2155 doi: 10.1002/adma.v22:19
[7]
Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421:241 doi: 10.1038/nature01353
[8]
Huang Y, Duan X, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1:142 doi: 10.1002/smll.200400030/abstract
[9]
Lee C H, Kim Y J, Hong Y J, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on grapheme films. Adv Mater, 2011, 10:1002 doi: 10.1002/adma.201102407/full?isReportingDone=true
[10]
Lai C M, Liu W Y, Tsay J D, et al. Self-separated freestanding GaN grown on patterned substrate by hydride vapor phase epitaxy. Phys Status Solidi, 2007, 7:2231 doi: 10.1002/pssc.200674733/abstract
[11]
Zubia D, Hersee S D. Nanoheteroepitaxy:the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J Appl Phys, 1999, 85:6492 doi: 10.1063/1.370153
[12]
Deb P, Kim H, Qin Y, et al. GaN nanorod Schottky and p-n junction diodes. Nano Lett, 2006, 6:2893 doi: 10.1021/nl062152j
[13]
Kim H M, Kang T W, Chung K S. Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv Mater, 2003, 15:567 doi: 10.1002/adma.200304554
[14]
Hersee S D, Sun X Y, Wang X. The controlled growth of GaN nanowires. Nano Lett, 2006, 6:1808 doi: 10.1021/nl060553t
[15]
Kim H M, Kim D S, Park Y S, et al. Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater, 2002, 14:991 doi: 10.1002/(ISSN)1521-4095
[16]
Paramanik D, Motayed A, Aluri G S, et al. Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme. J Vac Sci Technol B, 2012, 30:052202 doi: 10.1116/1.4739424
[17]
Choi W K, Liew T H, Dawood M K. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett, 2008, 11:3799 doi: 10.1021/nl802129f
[18]
Xie Zili, Zhou Yuanjun, Song Lihong, et al. Structural properties of GaN (0001) epitaxial layers revealed by high resolution X-ray diffraction. Physics, Mechanics & Astronomy, Science China, 2010, 53:68 doi: 10.1007/s11433-010-0102-5?slug=full%20text
[19]
Choi J H, Lee T Y, Choi S H, et al. Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer. Thin Solid Films, 2003, 435:318 doi: 10.1016/S0040-6090(03)00341-9
[20]
Jansen H V, de Boer M J, Unnikrishnan S. Black silicon method X:a review on high speed and selective plasma etching of silicon with profile control:an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. J Micromech Microeng, 2009, 19:033001 doi: 10.1088/0960-1317/19/3/033001
[21]
Perlin P, Jauberthie-Carillon C, Itie J P, et al. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure. Phys Rev B, 1992, 45:83 doi: 10.1103/PhysRevB.45.83
[22]
George S, Ilan S, Warren M, et al. Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology, 2005, 16:2342 doi: 10.1088/0957-4484/16/10/058
[23]
Seo H W, Bae S Y, Park J H, et al. Strained gallium nitride nanowires. Chem Phys, 2002, 116:9492 doi: 10.1063/1.1475748
[24]
Zhao D G, Xu S J, Xie M H, et al. Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl Phys Lett, 2003, 83:677 doi: 10.1063/1.1592306
[25]
Schnitzer I, Yablonovitch E, Caneau C, et al. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl Phys Lett, 1993, 63:2174 doi: 10.1063/1.110575
Fig. 1.  Schematic diagram of the formation of GaN nanopillars on sapphire. (a) Ni film deposition on the GaN/sapphire. (b) Ammonia annealing on Ni/GaN/sapphire. (c) ICP etching. (d) Ni removal.

Fig. 2.  SEM micrographs of Ni film of 35 nm with NH$_{3}$ annealing time. (a) 4 min. (b) 8 min. (c) 12 min. (d) 16 min.

Fig. 3.  The average diameter of Ni nano-islands with different annealing times for Ni film of 35 nm and 45 nm.

Fig. 4.  SEM images of Ni films annealed using ammonia at 850 ℃ for 12 min with different initial thicknesses. (a) 35 nm. (b) 45 nm. (c) 60 nm. (d) 80 nm.

Fig. 5.  SEM image of GaN nanopillars after ICP.

Fig. 6.  SEM images and typical EDX spectrum of GaN nanopillars (taken before Ni removal).

Fig. 7.  Raman spectra of the GaN sample before and after ICP.

Fig. 8.  PL spectra of GaN nanopillars and GaN films at room temperature.

[1]
Pearton S J, Zolper J C, Shui R J, et al. GaN:processing, defects, and devices. J Appl Phys, 1999, 86:1 doi: 10.1063/1.371145
[2]
Qian F, Li Y, Gradecak S, et al. Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat Mater, 2008, 7:701 doi: 10.1038/nmat2253
[3]
Zhong Z, Qian F, Wang D, et al. Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett, 2003, 3:343 doi: 10.1021/nl034003w
[4]
Tang Y B, Chen Z H, Song H S, et al. Vertically aligned p-type single-crystalline GaN nanorod arrays on n-type Si for heterojunction photovoltaic cells. Nano Lett, 2008, 8:4191 doi: 10.1021/nl801728d
[5]
Dobrokhotov V, McIlroy D N, Norton M G, et al. Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles. J Appl Phys, 2006, 99:104302 doi: 10.1063/1.2195420
[6]
Wang X B, Song J H, Zhang F, et al. Electricity generation based on one-dimensional group-Ⅲ nitride nanomaterials. Adv Mater, 2010, 22:2155 doi: 10.1002/adma.v22:19
[7]
Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers. Nature, 2003, 421:241 doi: 10.1038/nature01353
[8]
Huang Y, Duan X, Lieber C M. Nanowires for integrated multicolor nanophotonics. Small, 2005, 1:142 doi: 10.1002/smll.200400030/abstract
[9]
Lee C H, Kim Y J, Hong Y J, et al. Flexible inorganic nanostructure light-emitting diodes fabricated on grapheme films. Adv Mater, 2011, 10:1002 doi: 10.1002/adma.201102407/full?isReportingDone=true
[10]
Lai C M, Liu W Y, Tsay J D, et al. Self-separated freestanding GaN grown on patterned substrate by hydride vapor phase epitaxy. Phys Status Solidi, 2007, 7:2231 doi: 10.1002/pssc.200674733/abstract
[11]
Zubia D, Hersee S D. Nanoheteroepitaxy:the application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials. J Appl Phys, 1999, 85:6492 doi: 10.1063/1.370153
[12]
Deb P, Kim H, Qin Y, et al. GaN nanorod Schottky and p-n junction diodes. Nano Lett, 2006, 6:2893 doi: 10.1021/nl062152j
[13]
Kim H M, Kang T W, Chung K S. Nanoscale ultraviolet-light-emitting diodes using wide-bandgap gallium nitride nanorods. Adv Mater, 2003, 15:567 doi: 10.1002/adma.200304554
[14]
Hersee S D, Sun X Y, Wang X. The controlled growth of GaN nanowires. Nano Lett, 2006, 6:1808 doi: 10.1021/nl060553t
[15]
Kim H M, Kim D S, Park Y S, et al. Growth of GaN nanorods by a hydride vapor phase epitaxy method. Adv Mater, 2002, 14:991 doi: 10.1002/(ISSN)1521-4095
[16]
Paramanik D, Motayed A, Aluri G S, et al. Formation of large-area GaN nanostructures with controlled geometry and morphology using top-down fabrication scheme. J Vac Sci Technol B, 2012, 30:052202 doi: 10.1116/1.4739424
[17]
Choi W K, Liew T H, Dawood M K. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett, 2008, 11:3799 doi: 10.1021/nl802129f
[18]
Xie Zili, Zhou Yuanjun, Song Lihong, et al. Structural properties of GaN (0001) epitaxial layers revealed by high resolution X-ray diffraction. Physics, Mechanics & Astronomy, Science China, 2010, 53:68 doi: 10.1007/s11433-010-0102-5?slug=full%20text
[19]
Choi J H, Lee T Y, Choi S H, et al. Density control of carbon nanotubes using NH3 plasma treatment of Ni catalyst layer. Thin Solid Films, 2003, 435:318 doi: 10.1016/S0040-6090(03)00341-9
[20]
Jansen H V, de Boer M J, Unnikrishnan S. Black silicon method X:a review on high speed and selective plasma etching of silicon with profile control:an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. J Micromech Microeng, 2009, 19:033001 doi: 10.1088/0960-1317/19/3/033001
[21]
Perlin P, Jauberthie-Carillon C, Itie J P, et al. Raman scattering and X-ray-absorption spectroscopy in gallium nitride under high pressure. Phys Rev B, 1992, 45:83 doi: 10.1103/PhysRevB.45.83
[22]
George S, Ilan S, Warren M, et al. Catalytic hydride vapour phase epitaxy growth of GaN nanowires. Nanotechnology, 2005, 16:2342 doi: 10.1088/0957-4484/16/10/058
[23]
Seo H W, Bae S Y, Park J H, et al. Strained gallium nitride nanowires. Chem Phys, 2002, 116:9492 doi: 10.1063/1.1475748
[24]
Zhao D G, Xu S J, Xie M H, et al. Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl Phys Lett, 2003, 83:677 doi: 10.1063/1.1592306
[25]
Schnitzer I, Yablonovitch E, Caneau C, et al. 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl Phys Lett, 1993, 63:2174 doi: 10.1063/1.110575
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2483 Times PDF downloads: 24 Times Cited by: 0 Times

    History

    Received: 25 April 2013 Revised: 24 June 2013 Online: Published: 01 December 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zengqin Lin, Xiangqian Xiu, Shiying Zhang, Xuemei Hua, Zili Xie, Rong Zhang, Peng Chen, Ping Han, Youdou Zheng. GaN nanopillars with a nickel nano-island mask[J]. Journal of Semiconductors, 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001 Z Q Lin, X Q Xiu, S Y Zhang, X M Hua, Z L Xie, R Zhang, P Chen, P Han, Y D Zheng. GaN nanopillars with a nickel nano-island mask[J]. J. Semicond., 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001.Export: BibTex EndNote
      Citation:
      Zengqin Lin, Xiangqian Xiu, Shiying Zhang, Xuemei Hua, Zili Xie, Rong Zhang, Peng Chen, Ping Han, Youdou Zheng. GaN nanopillars with a nickel nano-island mask[J]. Journal of Semiconductors, 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001

      Z Q Lin, X Q Xiu, S Y Zhang, X M Hua, Z L Xie, R Zhang, P Chen, P Han, Y D Zheng. GaN nanopillars with a nickel nano-island mask[J]. J. Semicond., 2013, 34(12): 123001. doi: 10.1088/1674-4926/34/12/123001.
      Export: BibTex EndNote

      GaN nanopillars with a nickel nano-island mask

      doi: 10.1088/1674-4926/34/12/123001
      Funds:

      the National Natural Science Foundation of China 60936004

      the National Natural Science Foundation of China 61176063

      the Hi-Tech Research Project 2011AA03A103

      the Special Funds for Major State Basic Research Project 2011CB301900

      the National Natural Science Foundation of China 60990311

      the Natural Science Foundation of Jiangsu Province BK2011010

      the Special Funds for Major State Basic Research Project 2010CB327504

      the Special Funds for Major State Basic Research Project 2012CB619304

      Project supported by the Special Funds for Major State Basic Research Project (Nos. 2011CB301900, 2012CB619304, 2010CB327504), the Hi-Tech Research Project (No. 2011AA03A103), the National Natural Science Foundation of China (Nos. 60990311, 61274003, 60936004, 61176063), and the Natural Science Foundation of Jiangsu Province (No. BK2011010)

      the National Natural Science Foundation of China 61274003

      More Information
      • Corresponding author: Xiu Xiangqian, Email: xqxiu@nju.edu.cn
      • Received Date: 2013-04-25
      • Revised Date: 2013-06-24
      • Published Date: 2013-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return