SEMICONDUCTOR INTEGRATED CIRCUITS

Modeling and parameter extraction of CMOS on-chip coplanar waveguides up to 67 GHz for mm-wave applications

Jun Luo, Lei Zhang and Yan Wang

+ Author Affiliations

 Corresponding author: Luo Jun, luojun51211314@gmail.com

PDF

Abstract: Coplanar waveguides (CPW) are widely used in mm-wave circuits designs for their good performance. A novel unified model of various on chip CPWs for mm-wave application, together with corresponding direct parameter extraction methodologies, are proposed and investigated, where standard CPW, grounded CPW (GCPW) and CPW with slotted shield (SCPW) are included. Several kinds of influences of different structures are analyzed and considered into the model to explain the frequency-dependent per-unit-length L, C, R, and G parameters, among which the electromagnetic coupling for CPWs with large lower ground or shield is described by a new C-L-R series path in the parallel branch. The direct extraction procedures are established, which can ensure both accuracy and simplicity compared with other reported methods. Different CPWs are fabricated and measured on 90-nm CMOS processes with Short-Open-Load-Through (SOLT) de-embedding techniques. Excellent agreement between the model and the measured data for different CPWs is achieved up to 67 GHz.

Key words: CPWsunified modeldirect extractionmm-wave67 GHzCMOS



[1]
Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications. ISSCC Dig Tech Papers, 2011:164 http://ieeexplore.ieee.org/document/5746265/
[2]
Okada K, Matsushita K, Bunsen K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c. ISSCC Dig Tech Papers, 2011:2988 http://ieeexplore.ieee.org/abstract/document/5746263
[3]
Lee J, Li Y A, Hung M H. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45(12):2746 doi: 10.1109/JSSC.2010.2075250
[4]
Wang H, Zhang L, Yang D, et al. Modeling of current-return-path effect on single-ended inductor in millimeter-wave regime. IEEE Electron Device Lett, 2011, 32(6):737 doi: 10.1109/LED.2011.2136312
[5]
Sayag A, Ritter D, Goren D. Compact modeling and comparative analysis of silicon-chip slow-wave transmission lines with slotted bottom metal ground planes. IEEE Trans Microw Theory Tech, 2009, 57(4):840 doi: 10.1109/TMTT.2009.2015041
[6]
Cho H Y, Yeh T J, Liu S, et al. High-performance slow-wave transmission lines with optimized slot-type floating shields. IEEE Trans Electron Devices, 2009, 56(8):1705 doi: 10.1109/TED.2009.2024034
[7]
Gevorgian S, Linn Cr L J P, Kollberg E L. CAD models for shielded multilayered CPW. IEEE Trans Microw Theory Tech, 1995, 43(4):772 doi: 10.1109/22.375223
[8]
Brinkhoff J, Koh K S S, Kang K, et al. Scalable transmission line and inductor models for CMOS millimeter-wave design. IEEE Trans Microw Theory Tech, 2008, 56(12):2954 doi: 10.1109/TMTT.2008.2007337
[9]
Wang H, Zeng D, Yang D, et al. A unified model for on-chip CPWs with various types of ground shields. Proc IEEE RFIC Symp, 2011:1 http://ieeexplore.ieee.org/abstract/document/5746263
[10]
Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the 'pad-open-short' and 'open-short-load' de-embedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microw Theory Tech, 2005, 53(2):723 doi: 10.1109/TMTT.2004.840621
[11]
Gao W, Yu Z. Scalable compact circuit model and synthesis for RF CMOS spiral inductors. IEEE Trans Microw Theory Tech, 2006, 54(3):1055 doi: 10.1109/TMTT.2005.864134
Fig. 1.  Proposed unified equivalent circuit model for CPWs.

Fig. 2.  Parallel branch of the CPWs model. (a) $C_{\rm sg1}$. (b) $C$-$R$-$C$ network. (c) $C$-$L$-$R$ series path.

Fig. 3.  Proposed extraction flow of the unified CPW model.

Fig. 4.  (color online) Serial extraction of a CPW, comparisons of (a) $\omega^{2}$/$R_{\rm x}$ versus $f^{2}$, (b) $L_{\rm x}$ $\omega^{2}$/$R_{\rm x}$ versus $f^{2}$, (c) $R_{\rm x}$ versus $f$, (d) $L_{\rm x}$ versus $f$ between model and measured results.

Fig. 5.  (color online) $C$-$R$-$C$ extraction of a CPW, comparisons of (a) $C_{\rm x}$ $\omega^{2}$/$G_{\rm x}$ versus $f^{2}$, (b) $\omega^{2}$/$G_{\rm x}$ versus $f^{2}$, (c) $C_{\rm ox}$ versus $f$, (d) $G_{\rm x}$ versus $f$ between model and measured results.

Fig. 6.  (color online) $C$-$L$-$R$ extraction of an SCPW, comparisons of (a) $\omega$ $Z_{\rm parallel}$ versus $f^{2}$, (b) $C_{\rm x}$ versus $f$, (c) $G_{\rm x}$ versus $f$ between model and measured results.

Fig. 7.  Layout of (a) SCPW, (b) CPW, and (c) Open-Short.

Fig. 8.  (color online) Comparisons between the experimental data (dot) and the modeled results (line) of per-unit-length (a) resistance, (b) inductance, (c) capacitance, and (d) conductance.

Fig. 9.  (color online) $S$-parameter comparisons between the experimental data (dot) and the modeled results (line). (a) Magnitude of $S_{11}$. (b) Phase of $S_{11}$. (c) Magnitude of $S_{21}$. (d) Phase of $S_{21}$.

Table 1.   The extracted parameters of the proposed model for various types of CPWS.

[1]
Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phased-array transceiver pair for multi-Gb/s wireless communications. ISSCC Dig Tech Papers, 2011:164 http://ieeexplore.ieee.org/document/5746265/
[2]
Okada K, Matsushita K, Bunsen K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c. ISSCC Dig Tech Papers, 2011:2988 http://ieeexplore.ieee.org/abstract/document/5746263
[3]
Lee J, Li Y A, Hung M H. A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE J Solid-State Circuits, 2010, 45(12):2746 doi: 10.1109/JSSC.2010.2075250
[4]
Wang H, Zhang L, Yang D, et al. Modeling of current-return-path effect on single-ended inductor in millimeter-wave regime. IEEE Electron Device Lett, 2011, 32(6):737 doi: 10.1109/LED.2011.2136312
[5]
Sayag A, Ritter D, Goren D. Compact modeling and comparative analysis of silicon-chip slow-wave transmission lines with slotted bottom metal ground planes. IEEE Trans Microw Theory Tech, 2009, 57(4):840 doi: 10.1109/TMTT.2009.2015041
[6]
Cho H Y, Yeh T J, Liu S, et al. High-performance slow-wave transmission lines with optimized slot-type floating shields. IEEE Trans Electron Devices, 2009, 56(8):1705 doi: 10.1109/TED.2009.2024034
[7]
Gevorgian S, Linn Cr L J P, Kollberg E L. CAD models for shielded multilayered CPW. IEEE Trans Microw Theory Tech, 1995, 43(4):772 doi: 10.1109/22.375223
[8]
Brinkhoff J, Koh K S S, Kang K, et al. Scalable transmission line and inductor models for CMOS millimeter-wave design. IEEE Trans Microw Theory Tech, 2008, 56(12):2954 doi: 10.1109/TMTT.2008.2007337
[9]
Wang H, Zeng D, Yang D, et al. A unified model for on-chip CPWs with various types of ground shields. Proc IEEE RFIC Symp, 2011:1 http://ieeexplore.ieee.org/abstract/document/5746263
[10]
Tiemeijer L F, Havens R J, Jansman A B M, et al. Comparison of the 'pad-open-short' and 'open-short-load' de-embedding techniques for accurate on-wafer RF characterization of high-quality passives. IEEE Trans Microw Theory Tech, 2005, 53(2):723 doi: 10.1109/TMTT.2004.840621
[11]
Gao W, Yu Z. Scalable compact circuit model and synthesis for RF CMOS spiral inductors. IEEE Trans Microw Theory Tech, 2006, 54(3):1055 doi: 10.1109/TMTT.2005.864134
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2026 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 26 May 2013 Revised: Online: Published: 01 December 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jun Luo, Lei Zhang, Yan Wang. Modeling and parameter extraction of CMOS on-chip coplanar waveguides up to 67 GHz for mm-wave applications[J]. Journal of Semiconductors, 2013, 34(12): 125008. doi: 10.1088/1674-4926/34/12/125008 J Luo, L Zhang, Y Wang. Modeling and parameter extraction of CMOS on-chip coplanar waveguides up to 67 GHz for mm-wave applications[J]. J. Semicond., 2013, 34(12): 125008. doi: 10.1088/1674-4926/34/12/125008.Export: BibTex EndNote
      Citation:
      Jun Luo, Lei Zhang, Yan Wang. Modeling and parameter extraction of CMOS on-chip coplanar waveguides up to 67 GHz for mm-wave applications[J]. Journal of Semiconductors, 2013, 34(12): 125008. doi: 10.1088/1674-4926/34/12/125008

      J Luo, L Zhang, Y Wang. Modeling and parameter extraction of CMOS on-chip coplanar waveguides up to 67 GHz for mm-wave applications[J]. J. Semicond., 2013, 34(12): 125008. doi: 10.1088/1674-4926/34/12/125008.
      Export: BibTex EndNote

      Modeling and parameter extraction of CMOS on-chip coplanar waveguides up to 67 GHz for mm-wave applications

      doi: 10.1088/1674-4926/34/12/125008
      Funds:

      the National Natural Science Foundation of China 61204026

      the National Natural Science Foundation of China 61101001

      the National Natural Science Foundation of China 61176034

      the State Key Development Program for Basic Research of China 2010CB327404

      the Tsinghua University Initiative Scientific Research Program 

      Project supported by the State Key Development Program for Basic Research of China (No. 2010CB327404), the National High Technology Research and Development Program of China (No. 2011AA010202), the National Science and Technology Major Project of China (No. 2012ZX03004004), the National Natural Science Foundation of China (Nos. 61176034, 61101001, 61204026), and the Tsinghua University Initiative Scientific Research Program

      the National High Technology Research and Development Program of China 2011AA010202

      the National Science and Technology Major Project of China 2012ZX03004004

      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return