SEMICONDUCTOR DEVICES

Development of a novel accelerometer based on an overlay detection bridge

Chunhui Du1, 2, Changde He1, Xiaoyang Ge1, Yongping Zhang2, Jiaqi Yu1, Xiaopeng Song2 and Wendong Zhang1, 2,

+ Author Affiliations

 Corresponding author: Zhang Wendong,zhangwendong196298@163.com

PDF

Abstract: This paper describes the design, simulation, processing and test result of a high sensitivity accelerometer based on the piezoresistive effect which uses an overlay bridge detection method. The structure of this accelerometer is supersymmetric "mass-beams". This accelerometer has 8 beams, where two varistors are put in the two ends. Four varistors compose a Wheatstone bridge and the output voltages of the 4 Wheatstone bridges have been superimposed as the final output voltage. The sensitivity of the accelerometer can be improved effectively by these clever methods. A simplified mathematical model has been created to analyze the mechanical properties of the sensor, then the finite element modeling and simulation have been used to verify the feasibility of the accelerometer. The results show that the sensitivity of the accelerometer is 1.1381 mV/g, which is about four times larger than that of the single bridge accelerometers and series bridge sensor. The bandwidth is 0-1000 Hz which is equal to that of the single bridge accelerometers and the series bridge sensor. The comparison reveals that the new overlay detection bridge method can improve the sensitivity of the sensor in the same bandwidth. Meanwhile, this method provides an effective method to improve the sensitivity of piezoresistive sensors.

Key words: accelerometerMEMSpiezoresistiveoverlay detection bridge



[1]
Zhang Jianbi. MEMS-based micro-silicon piezoresistive accelerometer design. Electron Sci & Tech, 2009, 22(10):40 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYFZ200910015.htm
[2]
Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE, 1998, 86(8):1640 doi: 10.1109/5.704269
[3]
Chen S, Xue C Y, Zhang W D, et al. Fabrication and testing of a silicon-based piezoresistive two-axis accelerometer. Nanotechnol Precision Eng, 2008, 6(4):272 http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMJM200804008.htm
[4]
Wang Z, Xu Y. Design and optimization of an ultra-sensitive piezoresistive accelerometer for continuous respiratory sound monitoring. Sensor Lett, 2007, 5(2):450 doi: 10.1166/sl.2007.225
[5]
Wang Q M, Yang Z C, Li F, et al. Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling. Sensors and Actuators A, 2004, 113(1):1 doi: 10.1016/j.sna.2004.02.041
[6]
Lee I, Yoon G H, Park J, et al. Development and analysis of the vertical capacitive accelerometer. Sensors and Actuators A, 2005, 119(1):8 doi: 10.1016/j.sna.2004.06.033
[7]
Sahli S, Aslam D M. Ultra-high sensitivity intra-grain poly-diamond piezoresistors. Sensors and Actuators A, 1998, 71(3):193 doi: 10.1016/S0924-4247(98)00181-2
[8]
Lim M K, Du H, Su C, et al. A micromachined piezoresistive accelerometer with high sensitivity:design and modelling. Microelectron Eng, 1999, 49(3/4):263 http://cat.inist.fr/?aModele=afficheN&cpsidt=1208863
[9]
Wu R, Wen T D. Silicon micro-acceleration sensor technologies. Instrument Technique and Sensor, 2007, (3):8 http://en.cnki.com.cn/Article_en/CJFDTotal-YBJS200703003.htm
[10]
Wang F X, Sun H D. Mechanics of materials. Beijing:The Publishing House of Ordnance Industry, 2001:127
[11]
Timoshenko S. Vibration problems in engineering. Hoboken USA:Automotive Engineering, 1974 http://ci.nii.ac.jp/ncid/BA29427452
[12]
Smith C S. Piezoresistance effect in germanium and silicon. Phys Rev, 1954, 94(1):42 doi: 10.1103/PhysRev.94.42
[13]
Amarasinghe R, Dao D V, Toriyama T, et al. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sensors and Actuators A, 2007, 134(2):310 doi: 10.1016/j.sna.2006.05.044
[14]
Toriyama T, Tanimoto Y, Sugiyama S. Single crystal silicon nano-wire piezoresistors for mechanical sensors. Microelectromechan Syst, 2002, 11(5):605 doi: 10.1109/JMEMS.2002.802905
Fig. 1.  Three-dimensional model of the accelerometer.

Fig. 2.  Simple analysis of side-beams structure.

Fig. 3.  Geometry of the accelerometer structure of the sensor.

Fig. 4.  First to fourth vibration mode of the accelerometer.

Fig. 5.  Varistors and stress distribution of the structure.

Fig. 6.  Different detection methods for the same sensor.

Fig. 7.  Dice chip of acceleration.

Fig. 8.  Test results through precision centrifuge. (a) Test results of superposition method. (b) Test results of single bridge circuit. (c) Test results of series bridge circuit.

Fig. 9.  Frequency response curve of the sensor.

Table 1.   Resonant frequency of the structure.

Table 2.   Output characteristics when the same load is imposed in different directions.

[1]
Zhang Jianbi. MEMS-based micro-silicon piezoresistive accelerometer design. Electron Sci & Tech, 2009, 22(10):40 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DYFZ200910015.htm
[2]
Yazdi N, Ayazi F, Najafi K. Micromachined inertial sensors. Proc IEEE, 1998, 86(8):1640 doi: 10.1109/5.704269
[3]
Chen S, Xue C Y, Zhang W D, et al. Fabrication and testing of a silicon-based piezoresistive two-axis accelerometer. Nanotechnol Precision Eng, 2008, 6(4):272 http://en.cnki.com.cn/Article_en/CJFDTOTAL-NMJM200804008.htm
[4]
Wang Z, Xu Y. Design and optimization of an ultra-sensitive piezoresistive accelerometer for continuous respiratory sound monitoring. Sensor Lett, 2007, 5(2):450 doi: 10.1166/sl.2007.225
[5]
Wang Q M, Yang Z C, Li F, et al. Analysis of thin film piezoelectric microaccelerometer using analytical and finite element modeling. Sensors and Actuators A, 2004, 113(1):1 doi: 10.1016/j.sna.2004.02.041
[6]
Lee I, Yoon G H, Park J, et al. Development and analysis of the vertical capacitive accelerometer. Sensors and Actuators A, 2005, 119(1):8 doi: 10.1016/j.sna.2004.06.033
[7]
Sahli S, Aslam D M. Ultra-high sensitivity intra-grain poly-diamond piezoresistors. Sensors and Actuators A, 1998, 71(3):193 doi: 10.1016/S0924-4247(98)00181-2
[8]
Lim M K, Du H, Su C, et al. A micromachined piezoresistive accelerometer with high sensitivity:design and modelling. Microelectron Eng, 1999, 49(3/4):263 http://cat.inist.fr/?aModele=afficheN&cpsidt=1208863
[9]
Wu R, Wen T D. Silicon micro-acceleration sensor technologies. Instrument Technique and Sensor, 2007, (3):8 http://en.cnki.com.cn/Article_en/CJFDTotal-YBJS200703003.htm
[10]
Wang F X, Sun H D. Mechanics of materials. Beijing:The Publishing House of Ordnance Industry, 2001:127
[11]
Timoshenko S. Vibration problems in engineering. Hoboken USA:Automotive Engineering, 1974 http://ci.nii.ac.jp/ncid/BA29427452
[12]
Smith C S. Piezoresistance effect in germanium and silicon. Phys Rev, 1954, 94(1):42 doi: 10.1103/PhysRev.94.42
[13]
Amarasinghe R, Dao D V, Toriyama T, et al. Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sensors and Actuators A, 2007, 134(2):310 doi: 10.1016/j.sna.2006.05.044
[14]
Toriyama T, Tanimoto Y, Sugiyama S. Single crystal silicon nano-wire piezoresistors for mechanical sensors. Microelectromechan Syst, 2002, 11(5):605 doi: 10.1109/JMEMS.2002.802905
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2053 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 12 October 2012 Revised: 07 November 2012 Online: Published: 01 February 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chunhui Du, Changde He, Xiaoyang Ge, Yongping Zhang, Jiaqi Yu, Xiaopeng Song, Wendong Zhang. Development of a novel accelerometer based on an overlay detection bridge[J]. Journal of Semiconductors, 2013, 34(2): 024006. doi: 10.1088/1674-4926/34/2/024006 C H Du, C D He, X Y Ge, Y P Zhang, J Q Yu, X P Song, W D Zhang. Development of a novel accelerometer based on an overlay detection bridge[J]. J. Semicond., 2013, 34(2): 024006. doi: 10.1088/1674-4926/34/2/024006.Export: BibTex EndNote
      Citation:
      Chunhui Du, Changde He, Xiaoyang Ge, Yongping Zhang, Jiaqi Yu, Xiaopeng Song, Wendong Zhang. Development of a novel accelerometer based on an overlay detection bridge[J]. Journal of Semiconductors, 2013, 34(2): 024006. doi: 10.1088/1674-4926/34/2/024006

      C H Du, C D He, X Y Ge, Y P Zhang, J Q Yu, X P Song, W D Zhang. Development of a novel accelerometer based on an overlay detection bridge[J]. J. Semicond., 2013, 34(2): 024006. doi: 10.1088/1674-4926/34/2/024006.
      Export: BibTex EndNote

      Development of a novel accelerometer based on an overlay detection bridge

      doi: 10.1088/1674-4926/34/2/024006
      Funds:

      Project supported by the National Science and Technology Cooperation Program of China (No. 61011140351), the National High Technology Research and Development Program of China (No. 2011AA040404), and the National Natural Science Foundation of China (No. 61127008)

      the National Science and Technology Cooperation Program of China 61011140351

      the National High Technology Research and Development Program of China 2011AA040404

      the National Natural Science Foundation of China 61127008

      More Information
      • Corresponding author: Zhang Wendong,zhangwendong196298@163.com
      • Received Date: 2012-10-12
      • Revised Date: 2012-11-07
      • Published Date: 2013-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return