SEMICONDUCTOR INTEGRATED CIRCUITS

0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA

Zhiyi Lu, Hongyun Xie, Wenjuan Huo and Wanrong Zhang

+ Author Affiliations

 Corresponding author: Lu Zhiyi, luzhiyi213@yahoo.com.cn

PDF

Abstract: This paper presents design and implementation of a dual-band LNA using a 0.35 μm SiGe HBT process for 0.9 GHz GSM and 2.4 GHz WLAN applications. PCB layout parasitic effects have a vital effect on circuit performance and are accounted for using electro-magnetic (EM) simulation. Design considerations of noise decoupling, input/output impedance matching, and current reuse are described in detail. At 0.9/2.4 GHz, gain and noise figure are 13/16 dB and 4.2/3.9 dB, respectively. Both S11 and S22 are below-10 dB. Power dissipation is 40 mW at 3.5 V supply.

Key words: current reusedual-bandemitter inductorEM simulationSiGe HBT



[1]
Dao V K, Bui Q D, Park C S, et al. A multi-band 900 MHz/1.8 GHz/5.2 GHz LNA for reconfigurable radio. Radio Frequency Integrated Circuits Symposium, 2007, 1:69 http://ieeexplore.ieee.org/document/4266383/?arnumber=4266383&punumber%3D4266345
[2]
Amor M B, Douss S, Fakhfakh A, et al. Optimized design of a dual band low noise amplifier for the third generation of wireless system. SSD, 2005, 1:21 http://www.sciencedirect.com/science/article/pii/S2212017316304777
[3]
Wang R L, Chen S C, Huang C L. Single/multiband COMS low-noise amplifier using concentric switching inductors. Microw Opt Technol Lett, 2012, 54(2):309 doi: 10.1002/mop.v54.2
[4]
Datta S, Datta K, Dutta A. Fully concurrent dual-band LNA operating in 900 MHz/2.4 GHz bands for multi-standard wireless receiver with sub-2 dB noise figure. ICETET, 2010:731 http://ieeexplore.ieee.org/document/5698423/
[5]
Zhang Q Q, Liu Z F. Design of a concurrent dual-band LNA for GSM900 and GPS system. Microelectronics, 2011, 41(6):824
[6]
Wang S, Huang B Z. A high-gain CMOS LNA for 2.4/5.2 GHz WLAN applications. Progress in Electromagnetics Research C, 2011, 21:155 doi: 10.2528/PIERC11032705
[7]
Guo F, Li Z Q. The design of wideband CMOS VGA. Chinese Journal of Semiconductors, 2007, 28(12):1967 https://zh.scientific.net/AMR.1049-1050.682
[8]
Niknejad A M. Modeling of passive elements with ASITIC. IEEE MTTS Int Microw Symp Digest, 2002, 1(1):149 http://ieeexplore.ieee.org/document/1011581/
[9]
Xie H Y, Lu Z Y, Zhang W R. A dual-band SiGe HBT low noise amplifier. ICSICT, 2010, 1:568 http://ieeexplore.ieee.org/document/5667287/
[10]
Hao Mingli, Shi Yin. A 2.4 GHz power amplifier in 0.35μm SiGe BiCMOS. Journal of Semiconductors, 2010, 31(1):015004 doi: 10.1088/1674-4926/31/1/015004
[11]
Lin Y J, Hsu S H, Jin J D, et al. A 3.1-10.6 GHz ultra-wideband CMOS LNA with current reuse technique. IEEE Microw Wireless Compon Lett, 2007, 17(3):232 doi: 10.1109/LMWC.2006.890503
Fig. 1.  Structure of a dual-band LNA.

Fig. 2.  Simulation results comparison between schematic simulation and EM/circuit co-simulation. (a) S21. (b) S11. (c) S22.

Fig. 3.  Equivalent circuit of the transistor with inductor degeneration.

Fig. 4.  Comparison between NF simulation with and without an emitter inductor.

Fig. 5.  Small signal equivalent circuit of the input circuit resonating at two frequencies.

Fig. 6.  Current reuse cascade amplifier.

Fig. 7.  Whole circuit of the dual-band LNA.

Fig. 8.  3D layout of the dual-band LNA.

Fig. 9.  Test PCB.

Fig. 10.  Measured S parameters.

Fig. 11.  Measured noise figure (NF).

Table 1.   Comparison of LNAs operating in similar bands.

[1]
Dao V K, Bui Q D, Park C S, et al. A multi-band 900 MHz/1.8 GHz/5.2 GHz LNA for reconfigurable radio. Radio Frequency Integrated Circuits Symposium, 2007, 1:69 http://ieeexplore.ieee.org/document/4266383/?arnumber=4266383&punumber%3D4266345
[2]
Amor M B, Douss S, Fakhfakh A, et al. Optimized design of a dual band low noise amplifier for the third generation of wireless system. SSD, 2005, 1:21 http://www.sciencedirect.com/science/article/pii/S2212017316304777
[3]
Wang R L, Chen S C, Huang C L. Single/multiband COMS low-noise amplifier using concentric switching inductors. Microw Opt Technol Lett, 2012, 54(2):309 doi: 10.1002/mop.v54.2
[4]
Datta S, Datta K, Dutta A. Fully concurrent dual-band LNA operating in 900 MHz/2.4 GHz bands for multi-standard wireless receiver with sub-2 dB noise figure. ICETET, 2010:731 http://ieeexplore.ieee.org/document/5698423/
[5]
Zhang Q Q, Liu Z F. Design of a concurrent dual-band LNA for GSM900 and GPS system. Microelectronics, 2011, 41(6):824
[6]
Wang S, Huang B Z. A high-gain CMOS LNA for 2.4/5.2 GHz WLAN applications. Progress in Electromagnetics Research C, 2011, 21:155 doi: 10.2528/PIERC11032705
[7]
Guo F, Li Z Q. The design of wideband CMOS VGA. Chinese Journal of Semiconductors, 2007, 28(12):1967 https://zh.scientific.net/AMR.1049-1050.682
[8]
Niknejad A M. Modeling of passive elements with ASITIC. IEEE MTTS Int Microw Symp Digest, 2002, 1(1):149 http://ieeexplore.ieee.org/document/1011581/
[9]
Xie H Y, Lu Z Y, Zhang W R. A dual-band SiGe HBT low noise amplifier. ICSICT, 2010, 1:568 http://ieeexplore.ieee.org/document/5667287/
[10]
Hao Mingli, Shi Yin. A 2.4 GHz power amplifier in 0.35μm SiGe BiCMOS. Journal of Semiconductors, 2010, 31(1):015004 doi: 10.1088/1674-4926/31/1/015004
[11]
Lin Y J, Hsu S H, Jin J D, et al. A 3.1-10.6 GHz ultra-wideband CMOS LNA with current reuse technique. IEEE Microw Wireless Compon Lett, 2007, 17(3):232 doi: 10.1109/LMWC.2006.890503
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2416 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 16 May 2012 Revised: 08 September 2012 Online: Published: 01 February 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiyi Lu, Hongyun Xie, Wenjuan Huo, Wanrong Zhang. 0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA[J]. Journal of Semiconductors, 2013, 34(2): 025002. doi: 10.1088/1674-4926/34/2/025002 Z Y Lu, H Y Xie, W J Huo, W R Zhang. 0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA[J]. J. Semicond., 2013, 34(2): 025002. doi: 10.1088/1674-4926/34/2/025002.Export: BibTex EndNote
      Citation:
      Zhiyi Lu, Hongyun Xie, Wenjuan Huo, Wanrong Zhang. 0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA[J]. Journal of Semiconductors, 2013, 34(2): 025002. doi: 10.1088/1674-4926/34/2/025002

      Z Y Lu, H Y Xie, W J Huo, W R Zhang. 0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA[J]. J. Semicond., 2013, 34(2): 025002. doi: 10.1088/1674-4926/34/2/025002.
      Export: BibTex EndNote

      0.9 GHz and 2.4 GHz dual-band SiGe HBT LNA

      doi: 10.1088/1674-4926/34/2/025002
      Funds:

      the National Natural Science Foundation of China 60776051

      the National Natural Science Foundation of China 61006059

      the Beijing Municipal Natural Science Foundation, China 4082007

      the Beijing Municipal Education Committee, China KM20070005015

      the National Natural Science Foundation of China 61006044

      the Beijing Municipal Natural Science Foundation, China 4122014

      the Beijing Municipal Education Committee, China KM200910005001

      the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality 

      Project supported by the National Natural Science Foundation of China (Nos. 61006044, 60776051, 61006059), the Beijing Municipal Natural Science Foundation, China (Nos. 4122014, 4082007), the Beijing Municipal Education Committee, China (Nos. KM200910005001, KM20070005015), and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality

      More Information
      • Corresponding author: Lu Zhiyi, luzhiyi213@yahoo.com.cn
      • Received Date: 2012-05-16
      • Revised Date: 2012-09-08
      • Published Date: 2013-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return