SEMICONDUCTOR MATERIALS

Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication

V.K. Dwivedi1, 2, P. Srivastava2 and G. Vijaya Prakash1

+ Author Affiliations

 Corresponding author: G. Vijaya Prakash, prakash@physics.iitd.ac.in

PDF

Abstract: The fabrication of zinc oxide (ZnO) from inexpensive solution-processing techniques, namely, electrochemical deposition and electrospinning were explored on various conducting and mesoporous semiconducting surfaces. Optimised conditions were derived for template-and self-assisted nano/micro structures and composites. ZnO thin films were annealed at a fixed temperature under ambient conditions and characterised using physical and optical techniques. The photocurrent response in the UV region shows a fast rise and double decay behaviour with a fast component followed by a slow oscillatory decay. Photocurrent results were correlated with surface chemical analysis from X-ray photoelectron spectroscopy. Various characterisation details reveal the importance of fabrication parameter optimisation for useful low-cost optoelectronic applications.

Key words: zinc oxideelectrochemical depositionsurface analysisX-ray photoelectron spectroscopyphotocurrent responseoptoelectronic applications



[1]
Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J Appl Phys, 2005, 98(1):013505 doi: 10.1063/1.1940137
[2]
Park J W, Kim J K, Suh K Y. Fabrication of zinc oxide nanostructures using solvent-assisted capillary lithography. Nanotechnology, 2006, 17(10):2631 doi: 10.1088/0957-4484/17/10/031
[3]
Park J H, Jang S J, Kim S S, et al. Growth and characterization of single crystal ZnO thin films using inductively coupled plasma metal organic chemical vapor deposition. Appl Phys Lett, 2006, 89(12):121108 doi: 10.1063/1.2356075
[4]
Tian Z R, Voigt J A, Liu J, et al. Complex and oriented ZnO nanostructures. Nat Mater, 2003, 2(12):821 doi: 10.1038/nmat1014
[5]
Li Y, Meng G W, Zhang L D. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett, 2000, 76(15):2011 doi: 10.1063/1.126238
[6]
Prakash G V, Singh R, Kumar A, et al. Fabrication and characterisation of CdSe photonic structures from self-assembled templates. Mater Lett, 2006, 60(13/14):1744 http://cat.inist.fr/?aModele=afficheN&cpsidt=17628773
[7]
Prakash G V, Pradeesh K, Kumar A, et al. Fabrication and optoelectronic characterisation of ZnO photonic structures. Mater Lett, 2008, 62(8/9):1183 http://cat.inist.fr/?aModele=afficheN&cpsidt=20070298
[8]
Yang X, Shao C, Guan H, et al. Preparation and characterization of ZnO nano fibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg Chem Commun, 2004, 7(2):176 doi: 10.1016/j.inoche.2003.10.035
[9]
Teo W E, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17(14):R89 http://cat.inist.fr/?aModele=afficheN&cpsidt=17975191
[10]
Mizuta T, Ishibashi T, Minemoto T, et al. Chemical deposition of zinc oxide thin films on silicon substrate. Thin Solid Films, 2006, 515(4):2458 doi: 10.1016/j.tsf.2006.06.035
[11]
Mu G, Gudavarthy R V, Kulp E A, et al. Tilted epitaxial ZnO nanospears on Si(001) by chemical bath deposition. Chem Mater, 2009, 21(17):3960 doi: 10.1021/cm9010019
[12]
Shaoqiang C, Jian Z, Xiao F, et al. Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol-gel technique. Appl Surf Sci, 2005, 241(3/4):384 http://cat.inist.fr/?aModele=afficheN&cpsidt=16551843
[13]
Cai H, Shen H, Yin Y, et al. The effects of porous silicon on the crystal-line properties of ZnO thin film. J Phys Chem Solids, 2009, 70(6):967 doi: 10.1016/j.jpcs.2009.05.004
[14]
Kayahan E. White light luminescence from annealed thin ZnO deposited porous silicon. J Lumin, 2010, 130(7):1295 doi: 10.1016/j.jlumin.2010.02.042
[15]
Wong H. Recent developments in silicon optoelectronic devices. Microelectron Reliab, 2002, 42(3):317 doi: 10.1016/S0026-2714(02)00008-2
[16]
Mazzoleni C, Pavesi L. Application to optical components of dielectric porous silicon multilayers. Appl Phys Lett, 1995, 67(20):2983 doi: 10.1063/1.114833
[17]
Bettotti P, Cazzanelli M, Negro L D, et al. Silicon nanostructures for photonics. J Phys:Condens Matter, 2002, 14(35):8253 doi: 10.1088/0953-8984/14/35/305
[18]
Dwivedi V K, Pradeesh K, Prakash G V. Controlled emission from dye saturated single and coupled microcavities. Appl Surf Sci, 2011, 257(8):3468 doi: 10.1016/j.apsusc.2010.11.048
[19]
Qiao H, Guan B, Bocking T, et al. Optical properties of Ⅱ-Ⅵ colloidal quantum dot doped porous silicon microcavities. Appl Phys Lett, 2010, 96(16):161106 doi: 10.1063/1.3404183
[20]
Yoshida T, Komatsu D, Shimokawa N, et al. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films, 2004, 451:166 http://cat.inist.fr/?aModele=afficheN&cpsidt=15611202
[21]
Rappich J, Fahoume T M. Nonradiative recombination and band bending of p-Si(100) surfaces during electrochemical deposition of polycrystalline ZnO. Thin Solid Films, 2005, 487(1/2):157 http://www.sciencedirect.com/science/article/pii/S0040609005000866
[22]
Markham M L. An investigation into the properties of nanoporous semiconductors. PhD Thesis, University of Southampton, 2006 http://www.sciencedirect.com/science/article/pii/S1387181114002753
[23]
Xu Q A, Zhang J W, Ju K R, et al. ZnO thin film photoconductive ultraviolet detector with fast photoresponse. J Cryst Growth, 2006, 289(1):44 doi: 10.1016/j.jcrysgro.2005.11.008
[24]
Liu K W, Ma J G, Zhang J Y, et al. Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film. Solid State Electron, 2007, 51(5):757 doi: 10.1016/j.sse.2007.03.002
[25]
Yang W, Vispute R D, Choopun S, et al. Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films. Appl Phys Lett, 2001, 78(18):2781 doi: 10.1063/1.1368378
[26]
Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors. J Cryst Growth, 2001, 225(2-4):110 doi: 10.1016/S0022-0248(01)00830-2
[27]
Liu C Y, Zhang B P, Lu Z W, et al. Fabrication and characterization of ZnO film based UV photodetector. J Mater Sci:Mater Electron, 2009, 20(3):197 doi: 10.1007/s10854-008-9698-x
[28]
Sharma P, Sreenivas K, Rao K V. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. J Appl Phys, 2003, 93(7):3963 doi: 10.1063/1.1558994
[29]
Ra H W, Khan R, Kim J T, et al. Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment. Mater Lett, 2009, 63(28):2516 doi: 10.1016/j.matlet.2009.08.054
[30]
Lee J S, Islam M S, Kim S. Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sensor Actuat B:Chem, 2007, 126(1):73 doi: 10.1016/j.snb.2006.10.042
[31]
Zhang L, Chen Z, Tang Y, et al. Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films, 2005, 492(1/2):24 http://www.sciencedirect.com/science/article/pii/S0040609005006048
[32]
Pandey B, Ghosh S, Srivastava P, et al. Influence of microstructure on room temperature ferromagnetism in Ni implanted nanodimensional ZnO films. J Appl Phys, 2009, 105(3):033909 doi: 10.1063/1.3074517
[33]
Zhou H, Fang G, Yuan L, et al. Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature. Appl Phys Lett, 2009, 94(1):013503 doi: 10.1063/1.3064161
Fig. 1.  (a) XRD patterns of ZnO (Ⅰ) electrodeposited from ZnCl$_{2}$ and (Ⅱ) electrodeposited from Zn(NO$_{3})$$_{2}$ solutions, (Ⅲ) electro-spinned ZnO from Zn(Ac)$_{2}$ solution and (Ⅳ) ZnO-PS nanocomposite. The asterisk (*) indicates XRD peaks of silicon. XRD patterns are shifted along the $y$-axis for clarity. (b) Absorption and photoluminescence spectra of electro-spinned ZnO fibers.

Fig. 2.  (a) Normalised photocurrent ON-OFF response of ZnO films prepared from various methods. (b) Transient photocurrent response of ZnO deposited from various methods, the commercial Si detector response is shown as a reference. Labels i, ii, iii and iv represent the same as Fig. 1(a). The transient response for pure PS, overlapping ZnO-PS (dashed curve in Fig. 2(b) (iv)), is shown for comparison. All the graphs are in Fig. (b) are shifted along the $y$-axis for clarity.

Fig. 3.  Wavelength dependent photocurrent response of ZnO electrodeposited thin films obtained from Zn(NO$_{3})$$_{2}$ Zn(Ac)$_{2}$ and ZnCl$_{2}$ solutions. The bias voltage is set at 0 V. The spectral photocurrent response of the commercial Si detector is also included for comparison.

Fig. 4.  (Colour online) XPS spectra of (a) Zn2p core levels and (b) O1s core level with Gaussian fits (dotted lines) for O$_{\rm a}$, O$_{\rm b}$ and O$_{\rm c}$. Labels i, ii, iii and iv represent the same as Fig. 1(a). Spectra are shifted along the Y-axis for clarity.

Table 1.   Photocurrent response rise time, fall and slow fall times and efficiencies (QE) and estimated percentage of oxygen vacancies from the XPS analysis of ZnO fabricated from various methods. The data of ZnO prepared from various other methods reported in the literature are also given for comparison.

[1]
Tan S T, Chen B J, Sun X W, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition. J Appl Phys, 2005, 98(1):013505 doi: 10.1063/1.1940137
[2]
Park J W, Kim J K, Suh K Y. Fabrication of zinc oxide nanostructures using solvent-assisted capillary lithography. Nanotechnology, 2006, 17(10):2631 doi: 10.1088/0957-4484/17/10/031
[3]
Park J H, Jang S J, Kim S S, et al. Growth and characterization of single crystal ZnO thin films using inductively coupled plasma metal organic chemical vapor deposition. Appl Phys Lett, 2006, 89(12):121108 doi: 10.1063/1.2356075
[4]
Tian Z R, Voigt J A, Liu J, et al. Complex and oriented ZnO nanostructures. Nat Mater, 2003, 2(12):821 doi: 10.1038/nmat1014
[5]
Li Y, Meng G W, Zhang L D. Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl Phys Lett, 2000, 76(15):2011 doi: 10.1063/1.126238
[6]
Prakash G V, Singh R, Kumar A, et al. Fabrication and characterisation of CdSe photonic structures from self-assembled templates. Mater Lett, 2006, 60(13/14):1744 http://cat.inist.fr/?aModele=afficheN&cpsidt=17628773
[7]
Prakash G V, Pradeesh K, Kumar A, et al. Fabrication and optoelectronic characterisation of ZnO photonic structures. Mater Lett, 2008, 62(8/9):1183 http://cat.inist.fr/?aModele=afficheN&cpsidt=20070298
[8]
Yang X, Shao C, Guan H, et al. Preparation and characterization of ZnO nano fibers by using electrospun PVA/zinc acetate composite fiber as precursor. Inorg Chem Commun, 2004, 7(2):176 doi: 10.1016/j.inoche.2003.10.035
[9]
Teo W E, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17(14):R89 http://cat.inist.fr/?aModele=afficheN&cpsidt=17975191
[10]
Mizuta T, Ishibashi T, Minemoto T, et al. Chemical deposition of zinc oxide thin films on silicon substrate. Thin Solid Films, 2006, 515(4):2458 doi: 10.1016/j.tsf.2006.06.035
[11]
Mu G, Gudavarthy R V, Kulp E A, et al. Tilted epitaxial ZnO nanospears on Si(001) by chemical bath deposition. Chem Mater, 2009, 21(17):3960 doi: 10.1021/cm9010019
[12]
Shaoqiang C, Jian Z, Xiao F, et al. Nanocrystalline ZnO thin films on porous silicon/silicon substrates obtained by sol-gel technique. Appl Surf Sci, 2005, 241(3/4):384 http://cat.inist.fr/?aModele=afficheN&cpsidt=16551843
[13]
Cai H, Shen H, Yin Y, et al. The effects of porous silicon on the crystal-line properties of ZnO thin film. J Phys Chem Solids, 2009, 70(6):967 doi: 10.1016/j.jpcs.2009.05.004
[14]
Kayahan E. White light luminescence from annealed thin ZnO deposited porous silicon. J Lumin, 2010, 130(7):1295 doi: 10.1016/j.jlumin.2010.02.042
[15]
Wong H. Recent developments in silicon optoelectronic devices. Microelectron Reliab, 2002, 42(3):317 doi: 10.1016/S0026-2714(02)00008-2
[16]
Mazzoleni C, Pavesi L. Application to optical components of dielectric porous silicon multilayers. Appl Phys Lett, 1995, 67(20):2983 doi: 10.1063/1.114833
[17]
Bettotti P, Cazzanelli M, Negro L D, et al. Silicon nanostructures for photonics. J Phys:Condens Matter, 2002, 14(35):8253 doi: 10.1088/0953-8984/14/35/305
[18]
Dwivedi V K, Pradeesh K, Prakash G V. Controlled emission from dye saturated single and coupled microcavities. Appl Surf Sci, 2011, 257(8):3468 doi: 10.1016/j.apsusc.2010.11.048
[19]
Qiao H, Guan B, Bocking T, et al. Optical properties of Ⅱ-Ⅵ colloidal quantum dot doped porous silicon microcavities. Appl Phys Lett, 2010, 96(16):161106 doi: 10.1063/1.3404183
[20]
Yoshida T, Komatsu D, Shimokawa N, et al. Mechanism of cathodic electrodeposition of zinc oxide thin films from aqueous zinc nitrate baths. Thin Solid Films, 2004, 451:166 http://cat.inist.fr/?aModele=afficheN&cpsidt=15611202
[21]
Rappich J, Fahoume T M. Nonradiative recombination and band bending of p-Si(100) surfaces during electrochemical deposition of polycrystalline ZnO. Thin Solid Films, 2005, 487(1/2):157 http://www.sciencedirect.com/science/article/pii/S0040609005000866
[22]
Markham M L. An investigation into the properties of nanoporous semiconductors. PhD Thesis, University of Southampton, 2006 http://www.sciencedirect.com/science/article/pii/S1387181114002753
[23]
Xu Q A, Zhang J W, Ju K R, et al. ZnO thin film photoconductive ultraviolet detector with fast photoresponse. J Cryst Growth, 2006, 289(1):44 doi: 10.1016/j.jcrysgro.2005.11.008
[24]
Liu K W, Ma J G, Zhang J Y, et al. Ultraviolet photoconductive detector with high visible rejection and fast photoresponse based on ZnO thin film. Solid State Electron, 2007, 51(5):757 doi: 10.1016/j.sse.2007.03.002
[25]
Yang W, Vispute R D, Choopun S, et al. Ultraviolet photoconductive detector based on epitaxial Mg0.34Zn0.66O thin films. Appl Phys Lett, 2001, 78(18):2781 doi: 10.1063/1.1368378
[26]
Liang S, Sheng H, Liu Y, et al. ZnO Schottky ultraviolet photodetectors. J Cryst Growth, 2001, 225(2-4):110 doi: 10.1016/S0022-0248(01)00830-2
[27]
Liu C Y, Zhang B P, Lu Z W, et al. Fabrication and characterization of ZnO film based UV photodetector. J Mater Sci:Mater Electron, 2009, 20(3):197 doi: 10.1007/s10854-008-9698-x
[28]
Sharma P, Sreenivas K, Rao K V. Analysis of ultraviolet photoconductivity in ZnO films prepared by unbalanced magnetron sputtering. J Appl Phys, 2003, 93(7):3963 doi: 10.1063/1.1558994
[29]
Ra H W, Khan R, Kim J T, et al. Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment. Mater Lett, 2009, 63(28):2516 doi: 10.1016/j.matlet.2009.08.054
[30]
Lee J S, Islam M S, Kim S. Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sensor Actuat B:Chem, 2007, 126(1):73 doi: 10.1016/j.snb.2006.10.042
[31]
Zhang L, Chen Z, Tang Y, et al. Low temperature cathodic electrodeposition of nanocrystalline zinc oxide thin films. Thin Solid Films, 2005, 492(1/2):24 http://www.sciencedirect.com/science/article/pii/S0040609005006048
[32]
Pandey B, Ghosh S, Srivastava P, et al. Influence of microstructure on room temperature ferromagnetism in Ni implanted nanodimensional ZnO films. J Appl Phys, 2009, 105(3):033909 doi: 10.1063/1.3074517
[33]
Zhou H, Fang G, Yuan L, et al. Deep ultraviolet and near infrared photodiode based on n-ZnO/p-silicon nanowire heterojunction fabricated at low temperature. Appl Phys Lett, 2009, 94(1):013503 doi: 10.1063/1.3064161
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2234 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 01 April 2012 Revised: 16 August 2012 Online: Published: 01 March 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      V.K. Dwivedi, P. Srivastava, G. Vijaya Prakash. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication[J]. Journal of Semiconductors, 2013, 34(3): 033001. doi: 10.1088/1674-4926/34/3/033001 V K Dwivedi, P Srivastava, G V Prakash. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication[J]. J. Semicond., 2013, 34(3): 033001. doi:  10.1088/1674-4926/34/3/033001.Export: BibTex EndNote
      Citation:
      V.K. Dwivedi, P. Srivastava, G. Vijaya Prakash. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication[J]. Journal of Semiconductors, 2013, 34(3): 033001. doi: 10.1088/1674-4926/34/3/033001

      V K Dwivedi, P Srivastava, G V Prakash. Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication[J]. J. Semicond., 2013, 34(3): 033001. doi:  10.1088/1674-4926/34/3/033001.
      Export: BibTex EndNote

      Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano and microstructure fabrication

      doi: 10.1088/1674-4926/34/3/033001
      More Information
      • Corresponding author: G. Vijaya Prakash, prakash@physics.iitd.ac.in
      • Received Date: 2012-04-01
      • Revised Date: 2012-08-16
      • Published Date: 2013-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return