SEMICONDUCTOR DEVICES

A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices

Godwin Raj1, Hemant Pardeshi1, , Sudhansu Kumar Pati1, N Mohankumar2 and Chandan Kumar Sarkar1

+ Author Affiliations

 Corresponding author: Hemant Pardeshi, Email:pardeshi.ju@gmail.com

PDF

Abstract: We present a two-dimensional electron gas (2DEG) charge-control mobility variation based drain current model for sheet carrier density in the channel. The model was developed for the AlInGaN/AlN/GaN high-electron-mobility transistor. The sheet carrier density model used here accounts for the independence between the Fermi levels Ef and ns along with mobility for various Al and In molefractions. This physics based ns model fully depends upon the variation of Ef, u0, the first subband E0, the second subband E1, and ns. We present a physics based analytical drain current model using ns with the minimum set of parameters. The analytical results obtained are compared with the experimental results for four samples with various molefraction and barrier thickness. A good agreement between the results is obtained, thus validating the model.

Key words: 2DEGFermi levelAlInGaN



[1]
Shur M S. GaN based transistors for high power applications. Solid-State Electron, 1998, 42:2131 doi: 10.1016/S0038-1101(98)00208-1
[2]
Mishra U K, Shen L, Kazior T E, et al. GaN-based RF power devices and amplifiers. Proc IEEE, 2008, 96:287 doi: 10.1109/JPROC.2007.911060
[3]
Shen L, Heikman S, Moran B, et al. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett, 2001, 22:457 doi: 10.1109/55.954910
[4]
Simin G, Koudymov A, Fatima H, et al. SiO2/AlGaN/InGaN/GaN MOSDHFETs. IEEE Electron Device Lett, 2002, 23:458 doi: 10.1109/LED.2002.801316
[5]
Balmer R S, Hilton K P, Nash K J, et al. AlGaN/GaN microwave HFET including a thin AlN carrier exclusion layer. Phys Status Solidi C, 2003, 0:2331 doi: 10.1002/(ISSN)1610-1642
[6]
Wang C M, Wang X L, Hu G X, et al. Influence of AlN interfacial layer on electrical properties of high-Al-content Al0.45Ga0.55N/GaN HEMT structure. Appl Surf Sci, 2006, 253:762 doi: 10.1016/j.apsusc.2006.01.017
[7]
Hashimoto S, Akita K, Tanabe T, et al. Study of two-dimensional electron gas in AlGaN channel HEMTs with high crystalline quality. Phys Status Solidi C, 2010, 7:1938 doi: 10.1002/pssc.v7:7/8
[8]
Medjdoub F, Carlin J F, Gonschorek M, et al. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices. IEDM Tech Dig, 2006:927
[9]
Wang H, Chung J, Gao X, et al. Al2O3 passivated InAlN/GaN HEMTs on SiC substrate with record current density and transconductance. Phys Status Solidi C, 2010, 7(10):2440 doi: 10.1002/pssc.200983899
[10]
Sun H, Alt A R, Benedickter H, et al. 205-GHz (Al, In)N/GaN HEMTs. IEEE Electron Device Lett, 2010, 31(9):957 doi: 10.1109/LED.2010.2055826
[11]
Wang R, Sanier P, Xing X, et al. Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9 A/mm drain current density and 800 mS/mm transconductance. IEEE Electron Device Lett, 2010, 31(12):1383 doi: 10.1109/LED.2010.2072771
[12]
Wang R, Saunier P, Tang Y, et al. Enhancement-mode InAlN/AlN/GaN HEMTs with 10-12 A/mm leakage current and 1012 on/off current ratio. IEEE Electron Device Lett, 2011, 32(3):309 doi: 10.1109/LED.2010.2095494
[13]
Crespo A, Bellot M M, Chabak K D, et al. High-power Ka-band performance of AlInN/GaN HEMT with 9.8-nm-thin barrier. IEEE Electron Device Lett, 2010, 31(1):2 doi: 10.1109/LED.2009.2034875
[14]
Tang Y, Saunier P, Wang R, et al. High-performance monolithically integrated E/D mode InAlN/AlN/GaN HEMTs for mixed-signal applications. IEDM Tech Dig, 2010:30.4.1
[15]
Lee D S, Gao X, Guo S, et al. InAlN/GaN HEMTs with AlGaN back barriers. IEEE Electron Device Lett, 2011, 32(5):617 doi: 10.1109/LED.2011.2111352
[16]
Wang R, Li G, Laboutin O, et al. 210 GHz InAlN/GaN HEMTs with dielectric free passivation. IEEE Electron Device Lett, 2011, 32(7):892 doi: 10.1109/LED.2011.2147753
[17]
Cao Y, Wang K, Li G, et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions. J Cryst Growth, 2011, 323(1):529 doi: 10.1016/j.jcrysgro.2010.12.047
[18]
Takayama T, Yuri M, Itoh K, et al. Analysis of phase-separation region in wurtzite group Ⅲ nitride quaternary material system using modified valence force field model. J Cryst Growth, 2001, 222(1/2):29
[19]
Ketteniss N, Khoshroo L R, Eickelkamp M, et al. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates. Semicond Sci Technol, 2010, 25(7):075013 doi: 10.1088/0268-1242/25/7/075013
[20]
Lim T, Aidam R, Waltereit P, et al. GaN-based submicrometer HEMTs with lattice-matched InAlGaN barrier grown by MBE. IEEE Electron Device Lett, 2010, 31(7):671 doi: 10.1109/LED.2010.2048996
[21]
Hirayama H, Kinoshita A, Yamabi T, et al. Marked enhancement of 320-360 nm ultraviolet emission in quaternary InxAlyGa1-x-yN with In-segregation effect. Appl Phys Lett, 2002, 80(2):207 doi: 10.1063/1.1433162
[22]
Asgari A, Kalafi M, Faraone L. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Phys E, 2005, 28(4):491 doi: 10.1016/j.physe.2005.05.054
[23]
Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFET. IEEE Trans Electron Devices, 2011, 58:448 doi: 10.1109/TED.2010.2089690
[24]
Khandelwal S, Goyal N, Fjeldly T A. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Tran Electron Devices, 2011, 58:3622 doi: 10.1109/TED.2011.2161314
[25]
Ketteniss N, Khoshroo L R, Eickelkamp M, et al. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates. Semicond Sci Technol, 2010, 25(7):075013 doi: 10.1088/0268-1242/25/7/075013
[26]
Khoshroo L R, Ketteniss N, Mauder C, et al. Quaternary nitride heterostructure field effect transistors. Phys Status Solidi C, 2010, 7(7/8):2001
[27]
Wang R, Li G, Verma J, et al. 220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs. IEEE Electron Device Lett, 2011, 32(9):1215 doi: 10.1109/LED.2011.2158288
[28]
Kola S, Golio J M, Maracas G N. An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling. IEEE Electron Devices Lett, 1988, 9(3):136 doi: 10.1109/55.2067
[29]
Lee R R, Svensson S P, Lugli P. Pseudomorphic HEMT technology and Applications. Kluwer Academic Publishers, 1996:156
[30]
Ytterdal T, Cheng Y, Fjeldly T A. Device modelling for analog and RF circuit design. John Willey and Sons, 2003:31
[31]
Williams C K, Glisson T H, Hauser J R, et al. Energy bandgap and lattice constant contours of Ⅲ-Ⅴ quaternary alloys of the form AxByCzD or ABxCyDz. J Electron Mater, 1978, 7(5):639 doi: 10.1007/BF02655439
Fig. 1.  Cross-sectional view of AlInGaN/AlN/GaN HEMTs with gate length $L_{\rm g}$ and contact length $L_{\rm c}$. $d_{\rm i}$ is the spacer layer thickness and $d_{\rm d}$ is the layer thickness of n-AlInGaN. The drain current model gets between from the source-end and the drain end under the gate

Fig. 2.  Comparison of Al$_{0.74}$In$_{0.16}$Ga$_{0.1}$N (Sample A), Al$_{0.7}$In$_{0.15}$Ga$_{0.15}$N (Sample B) and Al$_{0.66}$In$_{0.14}$Ga$_{0.2}$N (Sample C) 2DEG mobility with sheet carrier concentration from the model and experimental comparison[25, 26] used

Fig. 3.  Comparison of the 2DEG confined carrier density using temperature by Eq. (8)

Fig. 4.  Carrier concentration ($n_{\rm s})$ calculated using the input values from the four samples from Table 1. These saturated $n_{\rm s}$ values are a better match with the experimental values[25, 26]. This model is also a better match for calculating the drain current model. DOS values are calculated according to sample devices as[29]

Fig. 5.  (a) Comparison of modeled $I_{\rm d}$-$V_{\rm d}$ characteristics with the experimental data for the AlInGaN/AlN/GaN samples A, B & C with $L_{\rm g}$ = 1 μm device for $V_{\rm d}$ = 10 V. Experimental data taken from Refs. [25, 26]. (b) Comparison of modeled $I_{\rm d}$-$V_{\rm d}$ characteristics with experimental data for the AlInGaN/AlN/GaN sample D with $L_{\rm g}$ = 0.066 μm device. Experimental data taken from Ref. [27]

Fig. 6.  Comparison of modeled $I_{\rm d}$-$V_{\rm d}$ characteristics for verification, with experimental data for the Al$_{0.74}$In$_{0.16}$Ga$_{0.10}$N/AlN/GaN $L_{\rm g}$ = 1 μm device. Experimental data taken from Refs. [25, 26]

Table 1.   Parameter description to calculate $n_{\rm s}$ for the four samples using Eq. (8)

Table 2.   Parameters used to calculate $n_{\rm s}$ for the four samples using Eq. (2)

Table 3.   Parameters used to plot $I_{\rm d}$ curves for the four samples using Eq. (10)

[1]
Shur M S. GaN based transistors for high power applications. Solid-State Electron, 1998, 42:2131 doi: 10.1016/S0038-1101(98)00208-1
[2]
Mishra U K, Shen L, Kazior T E, et al. GaN-based RF power devices and amplifiers. Proc IEEE, 2008, 96:287 doi: 10.1109/JPROC.2007.911060
[3]
Shen L, Heikman S, Moran B, et al. AlGaN/AlN/GaN high-power microwave HEMT. IEEE Electron Device Lett, 2001, 22:457 doi: 10.1109/55.954910
[4]
Simin G, Koudymov A, Fatima H, et al. SiO2/AlGaN/InGaN/GaN MOSDHFETs. IEEE Electron Device Lett, 2002, 23:458 doi: 10.1109/LED.2002.801316
[5]
Balmer R S, Hilton K P, Nash K J, et al. AlGaN/GaN microwave HFET including a thin AlN carrier exclusion layer. Phys Status Solidi C, 2003, 0:2331 doi: 10.1002/(ISSN)1610-1642
[6]
Wang C M, Wang X L, Hu G X, et al. Influence of AlN interfacial layer on electrical properties of high-Al-content Al0.45Ga0.55N/GaN HEMT structure. Appl Surf Sci, 2006, 253:762 doi: 10.1016/j.apsusc.2006.01.017
[7]
Hashimoto S, Akita K, Tanabe T, et al. Study of two-dimensional electron gas in AlGaN channel HEMTs with high crystalline quality. Phys Status Solidi C, 2010, 7:1938 doi: 10.1002/pssc.v7:7/8
[8]
Medjdoub F, Carlin J F, Gonschorek M, et al. Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices. IEDM Tech Dig, 2006:927
[9]
Wang H, Chung J, Gao X, et al. Al2O3 passivated InAlN/GaN HEMTs on SiC substrate with record current density and transconductance. Phys Status Solidi C, 2010, 7(10):2440 doi: 10.1002/pssc.200983899
[10]
Sun H, Alt A R, Benedickter H, et al. 205-GHz (Al, In)N/GaN HEMTs. IEEE Electron Device Lett, 2010, 31(9):957 doi: 10.1109/LED.2010.2055826
[11]
Wang R, Sanier P, Xing X, et al. Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9 A/mm drain current density and 800 mS/mm transconductance. IEEE Electron Device Lett, 2010, 31(12):1383 doi: 10.1109/LED.2010.2072771
[12]
Wang R, Saunier P, Tang Y, et al. Enhancement-mode InAlN/AlN/GaN HEMTs with 10-12 A/mm leakage current and 1012 on/off current ratio. IEEE Electron Device Lett, 2011, 32(3):309 doi: 10.1109/LED.2010.2095494
[13]
Crespo A, Bellot M M, Chabak K D, et al. High-power Ka-band performance of AlInN/GaN HEMT with 9.8-nm-thin barrier. IEEE Electron Device Lett, 2010, 31(1):2 doi: 10.1109/LED.2009.2034875
[14]
Tang Y, Saunier P, Wang R, et al. High-performance monolithically integrated E/D mode InAlN/AlN/GaN HEMTs for mixed-signal applications. IEDM Tech Dig, 2010:30.4.1
[15]
Lee D S, Gao X, Guo S, et al. InAlN/GaN HEMTs with AlGaN back barriers. IEEE Electron Device Lett, 2011, 32(5):617 doi: 10.1109/LED.2011.2111352
[16]
Wang R, Li G, Laboutin O, et al. 210 GHz InAlN/GaN HEMTs with dielectric free passivation. IEEE Electron Device Lett, 2011, 32(7):892 doi: 10.1109/LED.2011.2147753
[17]
Cao Y, Wang K, Li G, et al. MBE growth of high conductivity single and multiple AlN/GaN heterojunctions. J Cryst Growth, 2011, 323(1):529 doi: 10.1016/j.jcrysgro.2010.12.047
[18]
Takayama T, Yuri M, Itoh K, et al. Analysis of phase-separation region in wurtzite group Ⅲ nitride quaternary material system using modified valence force field model. J Cryst Growth, 2001, 222(1/2):29
[19]
Ketteniss N, Khoshroo L R, Eickelkamp M, et al. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates. Semicond Sci Technol, 2010, 25(7):075013 doi: 10.1088/0268-1242/25/7/075013
[20]
Lim T, Aidam R, Waltereit P, et al. GaN-based submicrometer HEMTs with lattice-matched InAlGaN barrier grown by MBE. IEEE Electron Device Lett, 2010, 31(7):671 doi: 10.1109/LED.2010.2048996
[21]
Hirayama H, Kinoshita A, Yamabi T, et al. Marked enhancement of 320-360 nm ultraviolet emission in quaternary InxAlyGa1-x-yN with In-segregation effect. Appl Phys Lett, 2002, 80(2):207 doi: 10.1063/1.1433162
[22]
Asgari A, Kalafi M, Faraone L. A quasi-two-dimensional charge transport model of AlGaN/GaN high electron mobility transistors (HEMTs). Phys E, 2005, 28(4):491 doi: 10.1016/j.physe.2005.05.054
[23]
Cheng X, Wang Y. A surface-potential-based compact model for AlGaN/GaN MODFET. IEEE Trans Electron Devices, 2011, 58:448 doi: 10.1109/TED.2010.2089690
[24]
Khandelwal S, Goyal N, Fjeldly T A. A physics-based analytical model for 2DEG charge density in AlGaN/GaN HEMT devices. IEEE Tran Electron Devices, 2011, 58:3622 doi: 10.1109/TED.2011.2161314
[25]
Ketteniss N, Khoshroo L R, Eickelkamp M, et al. Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates. Semicond Sci Technol, 2010, 25(7):075013 doi: 10.1088/0268-1242/25/7/075013
[26]
Khoshroo L R, Ketteniss N, Mauder C, et al. Quaternary nitride heterostructure field effect transistors. Phys Status Solidi C, 2010, 7(7/8):2001
[27]
Wang R, Li G, Verma J, et al. 220-GHz quaternary barrier InAlGaN/AlN/GaN HEMTs. IEEE Electron Device Lett, 2011, 32(9):1215 doi: 10.1109/LED.2011.2158288
[28]
Kola S, Golio J M, Maracas G N. An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling. IEEE Electron Devices Lett, 1988, 9(3):136 doi: 10.1109/55.2067
[29]
Lee R R, Svensson S P, Lugli P. Pseudomorphic HEMT technology and Applications. Kluwer Academic Publishers, 1996:156
[30]
Ytterdal T, Cheng Y, Fjeldly T A. Device modelling for analog and RF circuit design. John Willey and Sons, 2003:31
[31]
Williams C K, Glisson T H, Hauser J R, et al. Energy bandgap and lattice constant contours of Ⅲ-Ⅴ quaternary alloys of the form AxByCzD or ABxCyDz. J Electron Mater, 1978, 7(5):639 doi: 10.1007/BF02655439
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2648 Times PDF downloads: 35 Times Cited by: 0 Times

    History

    Received: 19 June 2012 Revised: 23 November 2012 Online: Published: 01 April 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices[J]. Journal of Semiconductors, 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002 G Raj, H Pardeshi, S K Pati, N Mohankumar, C K Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices[J]. J. Semicond., 2013, 34(4): 044002. doi:  10.1088/1674-4926/34/4/044002.Export: BibTex EndNote
      Citation:
      Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices[J]. Journal of Semiconductors, 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002

      G Raj, H Pardeshi, S K Pati, N Mohankumar, C K Sarkar. A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices[J]. J. Semicond., 2013, 34(4): 044002. doi:  10.1088/1674-4926/34/4/044002.
      Export: BibTex EndNote

      A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices

      doi: 10.1088/1674-4926/34/4/044002
      Funds:

      Project supported by the National Science and Technology Major Project (No. 2009ZX02025-1)

      the National Science and Technology Major Project 2009ZX02025-1

      More Information
      • Corresponding author: Hemant Pardeshi, Email:pardeshi.ju@gmail.com
      • Received Date: 2012-06-19
      • Revised Date: 2012-11-23
      • Published Date: 2013-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return