SEMICONDUCTOR DEVICES

A 1.55-μm laser array monolithically integrated with an MMI combiner

Li Ma1, 2, Hongliang Zhu1, , Song Liang1, Baojun Wang1, Can Zhang1, Lingjuan Zhao1, Jing Bian1 and Minghua Chen2

+ Author Affiliations

 Corresponding author: Zhu Hongliang, Email:Zhuhl@red.semi.ac.cn

PDF

Abstract: The monolithic integration of four 1.55-μm range InGaAsP/InP distributed feedback lasers with a 4×1 multimode-interference (MMI) optical combiner using the varied width ridge method is proposed and demonstrated. The average output power is 1.5 mW when the current of LD is 100 mA and the threshold current is 30-35 mA at 25℃. The lasing wavelength is 1.55-μm range and 40 dB sidemode suppression ratio is obtained. The four channels can operate separately or simultaneously.

Key words: DFB laser arrayvaried width ridgemonolithic integration



[1]
Yu L, Zhang J, Wang W, et al. Wavelength tuning in two-section distributed Bragg reflector laser by selective intermixing of InGaAsP-InGaAsP quantum well structure. Chinese Journal of Semiconductors, 2003, 24(9):903
[2]
Doerr C R, Joyner C H, Stulz L W, et al. Multifrequency laser having integrated amplified output coupler for high-extinction-ratio modulation with single-mode behavior. IEEE Photonics Technol Lett, 1998, 10(10):1374 doi: 10.1109/68.720265
[3]
Zhu H L, Xu X D, Wang H, et al. The study of distributed feedback laser arrays based on sampled gratings. Journal of Optoelectronics Laser, 2010, 21(9):1280
[4]
Ryu S W, Kim J. An asymmetric sampled laser array. ETRI, 2002, 24(5):341 doi: 10.4218/etrij.02.0102.0502
[5]
Park K H, Leem Y A, Yee D S, et al. Self-pulsation in multi-section distributed feedback laser diode with a novel dual grating structure. ETRI, 2003, 25(3):149 doi: 10.4218/etrij.03.0102.0315
[6]
Kudo K, Yashiki K, Sasaki T, et al. 1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-modulator. IEEE Photonics Technol Lett, 2000, 12(3):242 doi: 10.1109/68.826901
[7]
Yashiki K, Sato K, Morimoto T, et al. Wavelength-selectable light sources fabricated using advanced microarray-selective epitaxy. IEEE Photonics Technol Lett, 2004, 16(7):1619 doi: 10.1109/LPT.2004.828544
[8]
Nunoya N, Ishii H, Kawaguchi Y, et al. Tunable distributed amplification (TDA-) DFB laser with asymmetric structure. IEEE J Sel Topics Quantum Electron, 2011, 17(6):1505 doi: 10.1109/JSTQE.2011.2123083
[9]
Nunoya N, Ishii H, Kawaguchi Y, et al. Wide-band tuning of tunable distributed amplification distributed feedback laser array. Electron Lett, 2008, 44(3):205 doi: 10.1049/el:20083621
[10]
Wang H, Zhu H L, Jia L H, et al. Design and performance of a complex-coupled DFB laser with grating laser and its application to multi-wavelength sampled grating. Journal of Semiconductors, 2009, 30(2):024003 doi: 10.1088/1674-4926/30/2/024003
[11]
Dai Y, Wu K, Wu J, et al. Design of a monolithic tunable laser based on equivalent-chirp grating reflectors. Optics Letters, 2010, 35(23):3880 doi: 10.1364/OL.35.003880
[12]
Kong D H, Zhu H L, Liang S, et al. All-optical clock recovery using a ridge width varied two-section partly gain-coupled DFB self-pulsation laser. Optics Communications, 2010, 283(20):3970 doi: 10.1016/j.optcom.2010.06.022
[13]
Minford W J, Korotky S K, Alferness R D. Low-loss Ti:LiNbO3 waveguide bends at λ=1.3μm. IEEE Journal of Quantum Electron, 1992, 18(10):1802
[14]
Ma L, Zhu H L, Chen M H. Design and fabrication of a 1-by-4 multimode interference splitter. Proc SPIE, 2012:8267
[15]
Tsuruoka K, Kobayashi R, Ohsawa Y, et al. Four-channel 10-Gb/s operation of AlGaInAs-MQW-BH-DFB-LD array for 1.3-μm CWDM systems. IEEE J Quantum Electron, 2005, 11(5):1169 doi: 10.1109/JSTQE.2005.853844
Fig. 1.  Schematic structure of the DFB laser array by varied width ridge technique

Fig. 2.  (a) Photoluminescence spectra of the active and passive regions. (b) Uniform first-order grating with a 0.5 duty cycle using holographic exposure. (c) Scanning electron microscope (SEM) picture of the MMI coupler

Fig. 3.  Four-channel L-I characteristics

Fig. 4.  Four-channel lasing spectra from MMI facet when the current of DFB LD is 50 mA

Fig. 5.  Thermal crosstalk of DFB-LD

Table 1.   The comparison between the measured and calculated wavelength as a function of the waveguide width

[1]
Yu L, Zhang J, Wang W, et al. Wavelength tuning in two-section distributed Bragg reflector laser by selective intermixing of InGaAsP-InGaAsP quantum well structure. Chinese Journal of Semiconductors, 2003, 24(9):903
[2]
Doerr C R, Joyner C H, Stulz L W, et al. Multifrequency laser having integrated amplified output coupler for high-extinction-ratio modulation with single-mode behavior. IEEE Photonics Technol Lett, 1998, 10(10):1374 doi: 10.1109/68.720265
[3]
Zhu H L, Xu X D, Wang H, et al. The study of distributed feedback laser arrays based on sampled gratings. Journal of Optoelectronics Laser, 2010, 21(9):1280
[4]
Ryu S W, Kim J. An asymmetric sampled laser array. ETRI, 2002, 24(5):341 doi: 10.4218/etrij.02.0102.0502
[5]
Park K H, Leem Y A, Yee D S, et al. Self-pulsation in multi-section distributed feedback laser diode with a novel dual grating structure. ETRI, 2003, 25(3):149 doi: 10.4218/etrij.03.0102.0315
[6]
Kudo K, Yashiki K, Sasaki T, et al. 1.55-μm wavelength-selectable microarray DFB-LD's with monolithically integrated MMI combiner, SOA, and EA-modulator. IEEE Photonics Technol Lett, 2000, 12(3):242 doi: 10.1109/68.826901
[7]
Yashiki K, Sato K, Morimoto T, et al. Wavelength-selectable light sources fabricated using advanced microarray-selective epitaxy. IEEE Photonics Technol Lett, 2004, 16(7):1619 doi: 10.1109/LPT.2004.828544
[8]
Nunoya N, Ishii H, Kawaguchi Y, et al. Tunable distributed amplification (TDA-) DFB laser with asymmetric structure. IEEE J Sel Topics Quantum Electron, 2011, 17(6):1505 doi: 10.1109/JSTQE.2011.2123083
[9]
Nunoya N, Ishii H, Kawaguchi Y, et al. Wide-band tuning of tunable distributed amplification distributed feedback laser array. Electron Lett, 2008, 44(3):205 doi: 10.1049/el:20083621
[10]
Wang H, Zhu H L, Jia L H, et al. Design and performance of a complex-coupled DFB laser with grating laser and its application to multi-wavelength sampled grating. Journal of Semiconductors, 2009, 30(2):024003 doi: 10.1088/1674-4926/30/2/024003
[11]
Dai Y, Wu K, Wu J, et al. Design of a monolithic tunable laser based on equivalent-chirp grating reflectors. Optics Letters, 2010, 35(23):3880 doi: 10.1364/OL.35.003880
[12]
Kong D H, Zhu H L, Liang S, et al. All-optical clock recovery using a ridge width varied two-section partly gain-coupled DFB self-pulsation laser. Optics Communications, 2010, 283(20):3970 doi: 10.1016/j.optcom.2010.06.022
[13]
Minford W J, Korotky S K, Alferness R D. Low-loss Ti:LiNbO3 waveguide bends at λ=1.3μm. IEEE Journal of Quantum Electron, 1992, 18(10):1802
[14]
Ma L, Zhu H L, Chen M H. Design and fabrication of a 1-by-4 multimode interference splitter. Proc SPIE, 2012:8267
[15]
Tsuruoka K, Kobayashi R, Ohsawa Y, et al. Four-channel 10-Gb/s operation of AlGaInAs-MQW-BH-DFB-LD array for 1.3-μm CWDM systems. IEEE J Quantum Electron, 2005, 11(5):1169 doi: 10.1109/JSTQE.2005.853844
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2100 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 23 August 2012 Revised: 29 September 2012 Online: Published: 01 April 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Li Ma, Hongliang Zhu, Song Liang, Baojun Wang, Can Zhang, Lingjuan Zhao, Jing Bian, Minghua Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner[J]. Journal of Semiconductors, 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007 L Ma, H L Zhu, S Liang, B J Wang, C Zhang, L J Zhao, J Bian, M H Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner[J]. J. Semicond., 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007.Export: BibTex EndNote
      Citation:
      Li Ma, Hongliang Zhu, Song Liang, Baojun Wang, Can Zhang, Lingjuan Zhao, Jing Bian, Minghua Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner[J]. Journal of Semiconductors, 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007

      L Ma, H L Zhu, S Liang, B J Wang, C Zhang, L J Zhao, J Bian, M H Chen. A 1.55-μm laser array monolithically integrated with an MMI combiner[J]. J. Semicond., 2013, 34(4): 044007. doi: 10.1088/1674-4926/34/4/044007.
      Export: BibTex EndNote

      A 1.55-μm laser array monolithically integrated with an MMI combiner

      doi: 10.1088/1674-4926/34/4/044007
      Funds:

      the National Natural Science Foundation of China 61090392

      the National Natural Science Foundation of China 61021003

      the National High Technology Research and Development Program of China 2012AA012203

      Project supported by the National High Technology Research and Development Program of China (Nos. 2011AA010303, 2012AA012203), the State Key Development Program for Basic Research of China (No. 2011CB301702), and the National Natural Science Foundation of China (Nos. 61021003, 61090392)

      the National High Technology Research and Development Program of China 2011AA010303

      the State Key Development Program for Basic Research of China 2011CB301702

      More Information
      • Corresponding author: Zhu Hongliang, Email:Zhuhl@red.semi.ac.cn
      • Received Date: 2012-08-23
      • Revised Date: 2012-09-29
      • Published Date: 2013-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return