SEMICONDUCTOR PHYSICS

Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

R. T. Sapkal, S. S. Shinde, K. Y. Rajpure and C. H. Bhosale

+ Author Affiliations

 Corresponding author: C. H. Bhosale, Email:bhosale_ch@yahoo.com

PDF

Abstract: Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400℃ by using a chemical spray pyrolysis technique. Deposited films are characterized for their structural, morphological optical and photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400℃. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

Key words: photoelectrocatalysishydrolysisstarchDNSA



[1]
Lee J B, Lee H J, Seo S H, et al. Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films, 2001, 398/399:641
[2]
Lavrov R I, Ivon A I, Chernenko I M. Comparative characteristics of silver and copper electrodes on ZnO varistor ceramics. J Eur Cer Soc, 2004, 24:2591 doi: 10.1016/j.jeurceramsoc.2003.09.003
[3]
Minami T, Suzuki S, Miyata T. Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering. Thin Solid Films, 2001, 398/399:53
[4]
Caillaud F, Smith A, Baumard Chernenko J F. Deposition of ZnO films on polycrystalline alumina substrates by spray pyrolysis. J Eur Cer Soc, 1990, 6:313 doi: 10.1016/0955-2219(90)90022-8
[5]
Mende L S, Macmanus-Driscoll J L. ZnO——nanostructures, defects, and devices. Mater Today, 2007, 10:40
[6]
Gao W, Li Z. ZnO thin films produced by magnetron sputtering. Cera Inter, 2004, 30:1155 doi: 10.1016/j.ceramint.2003.12.197
[7]
Dai L, Deng H, Chen G, et al. Ultraviolet emission properties of ZnO film with zinc deficiency by SS CVD. Appl Surf Sci, 2008, 254:1599 doi: 10.1016/j.apsusc.2007.07.082
[8]
Mouet T, Devers T, Telia A, et al. Growth and characterization of thin ZnO films deposited on glass substrates by electrodeposition technique. Appl Surf Sci, 2010, 256:4114 doi: 10.1016/j.apsusc.2010.01.093
[9]
Shinde S S, Bhosale C H, Rajpure K Y. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. J Photochem Photobiol B:Biol, 2012, 113:70 doi: 10.1016/j.jphotobiol.2012.05.008
[10]
Paraguay D F, Estrada L W, Acosta N D R, et al. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 1999, 350:192 doi: 10.1016/S0040-6090(99)00050-4
[11]
Bae H Y, Choi G M. Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method. Sensors and Actuators B, 1999, 55:47 doi: 10.1016/S0925-4005(99)00038-6
[12]
Tamilarasan K, Ashok R, Abinandan S, et al. Optimization of operating variables for corn flour Starch hydrolysis using immobilized α-amylase by response surface methodology. Inter J Biotechnol Biochem, 2010, 6:841
[13]
Bej B, Basu R K, Ash S N. Kinetic studies on acid catalysed hydrolysis of starch. J Scientific and Industrial Res, 2008, 67:295
[14]
Shinde P S, Sadale S B, Patil P S, et al. UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Appl Cat B:Environ, 2009, 89:288 doi: 10.1016/j.apcatb.2009.02.025
[15]
Fiedorowicz M, Lii C, Tomasik P. Physicochemical properties of potato starch illuminated with visible polarised light. Carbohydrate Polymers, 2002, 50:57 doi: 10.1016/S0144-8617(02)00012-7
[16]
Fiedorowicz M, Para A. Structural and molecular properties of dialdehyde starch. Carbohydrate Polymers, 2006, 63:360 doi: 10.1016/j.carbpol.2005.08.054
[17]
Ortega-Ojeda F E, Larsson H, Eliasson A C. Gel formation in mixtures of amylose and high amylopectin potato starch. Carbohydrate Polymers, 2004, 57:55 doi: 10.1016/j.carbpol.2004.03.024
[18]
Chiaramonte E, Rhazi L, Aussenac T, et al. Amylose and amylopectin in starch by asymmetric flow field-flow fractionation with multi-angle light scattering and refractive index detection (AF4-MALS-RI). J Cereal Sci, 2012, 56:457 doi: 10.1016/j.jcs.2012.04.006
[19]
Lide D R. Handbook of chemistry and physics. 87 Edn Boca Raton, FL:CRC Press, 1998
Fig. 1.  X-ray diffraction pattern of typical ZnO thin film deposited at 400 .

Fig. 2.  Scanning electron micrograph of typical ZnO thin film deposited at 400 .

Fig. 3.  Optical absorbance of typical ZnO thin film (Inset shows the calculated direct band gap).

Fig. 4.  Visible extinction spectra of Starch-Iodine complex w. r. t. of time.

Fig. 5.  Raman spectra for unhydrolyzed and hydrolyzed starch.

[1]
Lee J B, Lee H J, Seo S H, et al. Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications. Thin Solid Films, 2001, 398/399:641
[2]
Lavrov R I, Ivon A I, Chernenko I M. Comparative characteristics of silver and copper electrodes on ZnO varistor ceramics. J Eur Cer Soc, 2004, 24:2591 doi: 10.1016/j.jeurceramsoc.2003.09.003
[3]
Minami T, Suzuki S, Miyata T. Transparent conducting impurity-co-doped ZnO:Al thin films prepared by magnetron sputtering. Thin Solid Films, 2001, 398/399:53
[4]
Caillaud F, Smith A, Baumard Chernenko J F. Deposition of ZnO films on polycrystalline alumina substrates by spray pyrolysis. J Eur Cer Soc, 1990, 6:313 doi: 10.1016/0955-2219(90)90022-8
[5]
Mende L S, Macmanus-Driscoll J L. ZnO——nanostructures, defects, and devices. Mater Today, 2007, 10:40
[6]
Gao W, Li Z. ZnO thin films produced by magnetron sputtering. Cera Inter, 2004, 30:1155 doi: 10.1016/j.ceramint.2003.12.197
[7]
Dai L, Deng H, Chen G, et al. Ultraviolet emission properties of ZnO film with zinc deficiency by SS CVD. Appl Surf Sci, 2008, 254:1599 doi: 10.1016/j.apsusc.2007.07.082
[8]
Mouet T, Devers T, Telia A, et al. Growth and characterization of thin ZnO films deposited on glass substrates by electrodeposition technique. Appl Surf Sci, 2010, 256:4114 doi: 10.1016/j.apsusc.2010.01.093
[9]
Shinde S S, Bhosale C H, Rajpure K Y. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. J Photochem Photobiol B:Biol, 2012, 113:70 doi: 10.1016/j.jphotobiol.2012.05.008
[10]
Paraguay D F, Estrada L W, Acosta N D R, et al. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 1999, 350:192 doi: 10.1016/S0040-6090(99)00050-4
[11]
Bae H Y, Choi G M. Electrical and reducing gas sensing properties of ZnO and ZnO-CuO thin films fabricated by spin coating method. Sensors and Actuators B, 1999, 55:47 doi: 10.1016/S0925-4005(99)00038-6
[12]
Tamilarasan K, Ashok R, Abinandan S, et al. Optimization of operating variables for corn flour Starch hydrolysis using immobilized α-amylase by response surface methodology. Inter J Biotechnol Biochem, 2010, 6:841
[13]
Bej B, Basu R K, Ash S N. Kinetic studies on acid catalysed hydrolysis of starch. J Scientific and Industrial Res, 2008, 67:295
[14]
Shinde P S, Sadale S B, Patil P S, et al. UVA and solar light assisted photoelectrocatalytic degradation of AO7 dye in water using spray deposited TiO2 thin films. Appl Cat B:Environ, 2009, 89:288 doi: 10.1016/j.apcatb.2009.02.025
[15]
Fiedorowicz M, Lii C, Tomasik P. Physicochemical properties of potato starch illuminated with visible polarised light. Carbohydrate Polymers, 2002, 50:57 doi: 10.1016/S0144-8617(02)00012-7
[16]
Fiedorowicz M, Para A. Structural and molecular properties of dialdehyde starch. Carbohydrate Polymers, 2006, 63:360 doi: 10.1016/j.carbpol.2005.08.054
[17]
Ortega-Ojeda F E, Larsson H, Eliasson A C. Gel formation in mixtures of amylose and high amylopectin potato starch. Carbohydrate Polymers, 2004, 57:55 doi: 10.1016/j.carbpol.2004.03.024
[18]
Chiaramonte E, Rhazi L, Aussenac T, et al. Amylose and amylopectin in starch by asymmetric flow field-flow fractionation with multi-angle light scattering and refractive index detection (AF4-MALS-RI). J Cereal Sci, 2012, 56:457 doi: 10.1016/j.jcs.2012.04.006
[19]
Lide D R. Handbook of chemistry and physics. 87 Edn Boca Raton, FL:CRC Press, 1998
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2139 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 10 November 2012 Revised: 08 December 2012 Online: Published: 01 May 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      R. T. Sapkal, S. S. Shinde, K. Y. Rajpure, C. H. Bhosale. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films[J]. Journal of Semiconductors, 2013, 34(5): 053001. doi: 10.1088/1674-4926/34/5/053001 R. T. Sapkal, S. S. Shinde, K. Y. Rajpure, C. H. Bhosale. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films[J]. J. Semicond., 2013, 34(5): 053001. doi: 10.1088/1674-4926/34/5/053001.Export: BibTex EndNote
      Citation:
      R. T. Sapkal, S. S. Shinde, K. Y. Rajpure, C. H. Bhosale. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films[J]. Journal of Semiconductors, 2013, 34(5): 053001. doi: 10.1088/1674-4926/34/5/053001

      R. T. Sapkal, S. S. Shinde, K. Y. Rajpure, C. H. Bhosale. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films[J]. J. Semicond., 2013, 34(5): 053001. doi: 10.1088/1674-4926/34/5/053001.
      Export: BibTex EndNote

      Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

      doi: 10.1088/1674-4926/34/5/053001
      More Information
      • Corresponding author: C. H. Bhosale, Email:bhosale_ch@yahoo.com
      • Received Date: 2012-11-10
      • Revised Date: 2012-12-08
      • Published Date: 2013-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return