SEMICONDUCTOR MATERIALS

Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting

Xiyuan Wang, Yongguang Huang, Dewei Liu, Xiaoning Zhu, Xiao Cui and Hongliang Zhu

+ Author Affiliations

 Corresponding author: Huang Yongguang, Email:yghuang@red.semi.ac.cn

PDF

Abstract: Pn junctions based on single crystalline tellurium supersaturated silicon were formed by ion implantation followed by pulsed laser melting (PLM). P type silicon wafers were implanted with 245 keV 126Te+ to a dose of 2×1015 ions/cm2, after a PLM process (248 nm, laser fluence of 0.30 and 0.35 J/cm2, 1-5 pulses, duration 30 ns), an n+ type single crystalline tellurium supersaturated silicon layer with high carrier density (highest concentration 4.10×1019 cm-3, three orders of magnitude larger than the solid solution limit) was formed, it shows high broadband optical absorption from 400 to 2500 nm. Current-voltage measurements were performed on these diodes under dark and one standard sun (AM 1.5), and good rectification characteristics were observed. For present results, the samples with 4-5 pulses PLM are best.

Key words: tellurium supersaturated silicon pn junctionstrong sub-band-gap optical absorptionion implantationpulsed laser melting



[1]
Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett, 2001, 78(13):1850 doi: 10.1063/1.1358846
[2]
Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Mater Sci Eng B, 2007, 137:289 doi: 10.1016/j.mseb.2006.10.002
[3]
Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl Phys Lett, 2004, 84(11):1850 doi: 10.1063/1.1667004
[4]
Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl Phys A, 2004, 79:1635 doi: 10.1007/s00339-004-2676-0?no-access=true
[5]
Sheehy M A, Winston L, Carey J E, et al. Role of the background gas in the morphology and optical properties of laser-microstructured silicon. Chem Mater, 2005, 17:3582 doi: 10.1021/cm049029i
[6]
Tabbal M, Kim T, Woolf D N, et al. Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing. Appl Phys A, 2010, 98:589 doi: 10.1007/s00339-009-5462-1
[7]
Hu S, Han P, Wang S, et al. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing. Semicond Sci Technol, 2012, 27:1 http://www.ingentaconnect.com/content/iop/sst/2012/00000027/00000010/art102002
[8]
Kim T G, Warrender J M, Aziz M J. Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur. Appl Phys Lett, 2006, 88:241902 doi: 10.1063/1.2212051
[9]
Bob B P, Kohno A, Charnvanichborikarn S, et al. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. J Appl Phys, 2010, 107:123506 doi: 10.1063/1.3415544
[10]
Pan S H, Recht D, Charnvanichborikarn S, et al. Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens. Appl Phys Lett, 2011, 98:121913 doi: 10.1063/1.3567759
[11]
Carey J E, Crouch C H, Shen M, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett, 2005, 30(14):1773 doi: 10.1364/OL.30.001773
[12]
Huang Z, Carey J E, Liu M, et al. Microstructured silicon photodetector. Appl Phys Lett, 2006, 89:033506 doi: 10.1063/1.2227629
[13]
Said A J, Recht D, Sullivan J T, et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes. Appl Phys Lett, 2011, 99:073503 doi: 10.1063/1.3609871
[14]
Tull B R, Winkler M T, Mazur E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Appl Phys A, 2009, 96:327 doi: 10.1007/s00339-009-5200-8
[15]
Shao H, Li Y, Zhang J, et al. Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon. Euro Phys Lett, 2012, 99:46005 doi: 10.1209/0295-5075/99/46005
[16]
Sánchez K, Aguilera I, Palacios P, et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group Ⅲ elements (B, Al). Phys Rev B, 2010, 82:165201 doi: 10.1103/PhysRevB.82.165201
[17]
Wang Xiyuan, Huang Yongguang, Liu Dewei, et al. Fabrication of tellurium doped silicon detector by femtosecond laser and excimer laser. Chinese Journal of Lasers, 2013, 40(3):0302001 doi: 10.3788/CJL
[18]
Wang Xiyuan, Huang Yongguang, Liu Dewei, et al. High response in a tellurium-supersaturated silicon photodiode. Chin Phys Lett, 2013, 30(3):036101 doi: 10.1088/0256-307X/30/3/036101
[19]
Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett, 1998, 73(12):1673 doi: 10.1063/1.122241
[20]
Li Ping, Wang Yu, Feng Guojin, et al. Study of silicon micro-structuring using ultra-short laser pulses. Chinese Journal of Lasers, 2006, 33(12):1688 doi: 10.1007/s00339-004-2676-0?no-access=true
[21]
Ziegler J F, Ziegler M D, Biersack J P. SRIM-the stopping and range of ions in matter. Nuclear Instruments and Methods in Physics Research B, 2010, 268:1818 doi: 10.1016/j.nimb.2010.02.091
[22]
Voutsas A T, Hatalis M K, Boyce J, et al. Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. J Appl Phys, 1995, 78(12):6999 doi: 10.1063/1.360468
[23]
Tabbal M, Kim T, Warrender J M, et al. Formation of single crystal sulfur supersaturated silicon based junctions by pulsed laser melting. J Vac Sci Technol B, 2007, 25(6):1847 doi: 10.1116/1.2796184
[24]
Sheehy M A. Femtosecond-laser microstructuring of silicon:dopants and defects. PhD Dissertation, Harvard University, Cambridge, MA, 2004:27 http://adsabs.harvard.edu/abs/2004PhDT.......230S
[25]
Narayan J, White C W, Aziz M J, et al. Pulsed excimer (KrF) laser melting of amorphous and crystalline silicon layers. J Appl Phys, 1985, 57(2):564 doi: 10.1063/1.334738
[26]
Ertekin E, Winkler M T, Recht D, et al. Insulator-to-metal transition in selenium-hyperdoped silicon:observation and origin. Phys Rev Lett, 2012, 108:026401 doi: 10.1103/PhysRevLett.108.026401
Fig. 1.  Schematic diagram of tellurium supersaturated silicon diode.

Fig. 2.  Raman spectra of silicon wafer, silicon wafer implanted with Te, and Te supersaturated silicon after PLM.

Fig. 3.  The absorptance of silicon substrate, silicon implanted with Te, and Te supersaturated silicon after PLM 0.30 J/cm$^{2}$, 1-5 pulses ranges from 400 to 2500 nm. Inset is the absorption coefficient of Te supersaturated silicon after PLM 0.30 J/cm$^{2}$, 1 pulse. Reflectance and transmittance were measured directly, absorptance was calculated by formula $A=1-R-T$, absorption coefficient was calculated by formula $\alpha$ $=$ ln[(1-$R)/T]$ / $d.$

Fig. 4.  The current-voltage characteristics of Te supersaturated silicon diodes with PLM 0.30 J/cm$^{2}$, 1-5 pulses.

Fig. 5.  $I$-$V$ curves measured under one standard sun at room temperature (AM 1.5) for Te supersaturated silicon diodes with PLM 0.30 J/cm$^{2}$, 1-5 pulses.

Table 1.   Number of shots, laser fluence, sheet carrier concentration, Hall mobility and carrier to donor ratio for PLM layer of silicon wafer supersaturated with Te at dose of 2 $\times$ 10$^{15}$ ions/cm$^{2}$.

[1]
Wu C, Crouch C H, Zhao L, et al. Near-unity below-band-gap absorption by microstructured silicon. Appl Phys Lett, 2001, 78(13):1850 doi: 10.1063/1.1358846
[2]
Sheehy M A, Tull B R, Friend C M, et al. Chalcogen doping of silicon via intense femtosecond-laser irradiation. Mater Sci Eng B, 2007, 137:289 doi: 10.1016/j.mseb.2006.10.002
[3]
Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon. Appl Phys Lett, 2004, 84(11):1850 doi: 10.1063/1.1667004
[4]
Crouch C H, Carey J E, Shen M, et al. Infrared absorption by sulfur-doped silicon formed by femtosecond laser irradiation. Appl Phys A, 2004, 79:1635 doi: 10.1007/s00339-004-2676-0?no-access=true
[5]
Sheehy M A, Winston L, Carey J E, et al. Role of the background gas in the morphology and optical properties of laser-microstructured silicon. Chem Mater, 2005, 17:3582 doi: 10.1021/cm049029i
[6]
Tabbal M, Kim T, Woolf D N, et al. Fabrication and sub-band-gap absorption of single-crystal Si supersaturated with Se by pulsed laser mixing. Appl Phys A, 2010, 98:589 doi: 10.1007/s00339-009-5462-1
[7]
Hu S, Han P, Wang S, et al. Improved photoresponse characteristics in Se-doped Si photodiodes fabricated using picosecond pulsed laser mixing. Semicond Sci Technol, 2012, 27:1 http://www.ingentaconnect.com/content/iop/sst/2012/00000027/00000010/art102002
[8]
Kim T G, Warrender J M, Aziz M J. Strong sub-band-gap infrared absorption in silicon supersaturated with sulfur. Appl Phys Lett, 2006, 88:241902 doi: 10.1063/1.2212051
[9]
Bob B P, Kohno A, Charnvanichborikarn S, et al. Fabrication and subband gap optical properties of silicon supersaturated with chalcogens by ion implantation and pulsed laser melting. J Appl Phys, 2010, 107:123506 doi: 10.1063/1.3415544
[10]
Pan S H, Recht D, Charnvanichborikarn S, et al. Enhanced visible and near-infrared optical absorption in silicon supersaturated with chalcogens. Appl Phys Lett, 2011, 98:121913 doi: 10.1063/1.3567759
[11]
Carey J E, Crouch C H, Shen M, et al. Visible and near-infrared responsivity of femtosecond-laser microstructured silicon photodiodes. Opt Lett, 2005, 30(14):1773 doi: 10.1364/OL.30.001773
[12]
Huang Z, Carey J E, Liu M, et al. Microstructured silicon photodetector. Appl Phys Lett, 2006, 89:033506 doi: 10.1063/1.2227629
[13]
Said A J, Recht D, Sullivan J T, et al. Extended infrared photoresponse and gain in chalcogen-supersaturated silicon photodiodes. Appl Phys Lett, 2011, 99:073503 doi: 10.1063/1.3609871
[14]
Tull B R, Winkler M T, Mazur E. The role of diffusion in broadband infrared absorption in chalcogen-doped silicon. Appl Phys A, 2009, 96:327 doi: 10.1007/s00339-009-5200-8
[15]
Shao H, Li Y, Zhang J, et al. Physical mechanisms for the unique optical properties of chalcogen-hyperdoped silicon. Euro Phys Lett, 2012, 99:46005 doi: 10.1209/0295-5075/99/46005
[16]
Sánchez K, Aguilera I, Palacios P, et al. Formation of a reliable intermediate band in Si heavily coimplanted with chalcogens (S, Se, Te) and group Ⅲ elements (B, Al). Phys Rev B, 2010, 82:165201 doi: 10.1103/PhysRevB.82.165201
[17]
Wang Xiyuan, Huang Yongguang, Liu Dewei, et al. Fabrication of tellurium doped silicon detector by femtosecond laser and excimer laser. Chinese Journal of Lasers, 2013, 40(3):0302001 doi: 10.3788/CJL
[18]
Wang Xiyuan, Huang Yongguang, Liu Dewei, et al. High response in a tellurium-supersaturated silicon photodiode. Chin Phys Lett, 2013, 30(3):036101 doi: 10.1088/0256-307X/30/3/036101
[19]
Her T H, Finlay R J, Wu C, et al. Microstructuring of silicon with femtosecond laser pulses. Appl Phys Lett, 1998, 73(12):1673 doi: 10.1063/1.122241
[20]
Li Ping, Wang Yu, Feng Guojin, et al. Study of silicon micro-structuring using ultra-short laser pulses. Chinese Journal of Lasers, 2006, 33(12):1688 doi: 10.1007/s00339-004-2676-0?no-access=true
[21]
Ziegler J F, Ziegler M D, Biersack J P. SRIM-the stopping and range of ions in matter. Nuclear Instruments and Methods in Physics Research B, 2010, 268:1818 doi: 10.1016/j.nimb.2010.02.091
[22]
Voutsas A T, Hatalis M K, Boyce J, et al. Raman spectroscopy of amorphous and microcrystalline silicon films deposited by low-pressure chemical vapor deposition. J Appl Phys, 1995, 78(12):6999 doi: 10.1063/1.360468
[23]
Tabbal M, Kim T, Warrender J M, et al. Formation of single crystal sulfur supersaturated silicon based junctions by pulsed laser melting. J Vac Sci Technol B, 2007, 25(6):1847 doi: 10.1116/1.2796184
[24]
Sheehy M A. Femtosecond-laser microstructuring of silicon:dopants and defects. PhD Dissertation, Harvard University, Cambridge, MA, 2004:27 http://adsabs.harvard.edu/abs/2004PhDT.......230S
[25]
Narayan J, White C W, Aziz M J, et al. Pulsed excimer (KrF) laser melting of amorphous and crystalline silicon layers. J Appl Phys, 1985, 57(2):564 doi: 10.1063/1.334738
[26]
Ertekin E, Winkler M T, Recht D, et al. Insulator-to-metal transition in selenium-hyperdoped silicon:observation and origin. Phys Rev Lett, 2012, 108:026401 doi: 10.1103/PhysRevLett.108.026401
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2206 Times PDF downloads: 9 Times Cited by: 0 Times

    History

    Received: 16 November 2012 Revised: 01 December 2012 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiyuan Wang, Yongguang Huang, Dewei Liu, Xiaoning Zhu, Xiao Cui, Hongliang Zhu. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting[J]. Journal of Semiconductors, 2013, 34(6): 063001. doi: 10.1088/1674-4926/34/6/063001 X Y Wang, Y G Huang, D W Liu, X N Zhu, X Cui, H L Zhu. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting[J]. J. Semicond., 2013, 34(6): 063001. doi: 10.1088/1674-4926/34/6/063001.Export: BibTex EndNote
      Citation:
      Xiyuan Wang, Yongguang Huang, Dewei Liu, Xiaoning Zhu, Xiao Cui, Hongliang Zhu. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting[J]. Journal of Semiconductors, 2013, 34(6): 063001. doi: 10.1088/1674-4926/34/6/063001

      X Y Wang, Y G Huang, D W Liu, X N Zhu, X Cui, H L Zhu. Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting[J]. J. Semicond., 2013, 34(6): 063001. doi: 10.1088/1674-4926/34/6/063001.
      Export: BibTex EndNote

      Formation of single crystalline tellurium supersaturated silicon pn junctions by ion implantation followed by pulsed laser melting

      doi: 10.1088/1674-4926/34/6/063001
      Funds:

      the Beijing Natural Science Foundation 4122080

      the State Key Development Program for Basic Research of China 2012CB934202

      Project supported by the Beijing Natural Science Foundation (No. 4122080), the State Key Development Program for Basic Research of China (No. 2012CB934202), and the CAS Program (No. Y072051002)

      the CAS Program Y072051002

      More Information
      • Corresponding author: Huang Yongguang, Email:yghuang@red.semi.ac.cn
      • Received Date: 2012-11-16
      • Revised Date: 2012-12-01
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return