SEMICONDUCTOR DEVICES

Planar InP-based Schottky barrier diodes for terahertz applications

Jingtao Zhou, Chengyue Yang, Ji Ge and Zhi Jin

+ Author Affiliations

 Corresponding author: Jin Zhi, Email:jinzhi@ime.ac.cn

PDF

Abstract: Based on characteristics such as low barrier and high electron mobility of lattice matched In0.53Ga0.47 As layer, InP-based Schottky barrier diodes (SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones. Planar InP-based SBDs have been developed in this paper. Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved. The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32 Ω and 9.1 fF, respectively. They are highly consistent with the calculated values. The performances of the InP-based SBDs in this work, such as low noise and low loss, are promising for applications in the terahertz mixer, multiplier and detector circuits.

Key words: Schottky barrier diodesterahertzcuttoff frequency



[1]
Liu L, Hesler J L, Xu H Y, et al. A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode. IEEE Microw Wireless Compon Lett, 2010, 20(9):504 doi: 10.1109/LMWC.2010.2055553
[2]
Semenov A, Cojocari O, Hübers H, et al. Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation. IEEE Electron Device Lett, 2010, 31(7):674 doi: 10.1109/LED.2010.2048192
[3]
Siles J V, Grajal J, Carlo A D. Design of submillimeter Schottky mixers under flat-band conditions using an improved drift-diffusion model. IEEE Microw Wireless Compon Lett, 2009, 19(3):167 doi: 10.1109/LMWC.2009.2013741
[4]
Thomas B, Maestrini A, Gill J, et al. A broadband 835-900-GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes. IEEE Trans Microw Theory Tech, 2010, 58(7):1917 doi: 10.1109/TMTT.2010.2050181
[5]
Chattopadhyay G. Technology capabilities and performance of low power teraherz sources. IEEE Trans Terahertz Sci Technol, 2010, 1(1):33 http://ieeexplore.ieee.org/document/6005327/
[6]
Lee C, Ward J, Lin R, et al. A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multiplies. Proceedings of IEEE MTT-S Digest, Boston, MA, USA, 2009:957 http://ieeexplore.ieee.org/document/5165857/
[7]
Sze S M. Physics of semiconductor devices. 2nd ed. New York:John-Wiley & Sons, 1981
[8]
Hesler J L, Crowe T W. Responsivity and noise measurements of zero-bias Schottky diode detectors. 18th Intel Symp Space Terahertz Tech, Pasadena, March 2007 http://vadiodes.com/VDI/pdf/VDI%20Detector%20Char%20ISSTT2007.pdf
[9]
Bahl I, Bhartia P. Microwave solid state circuit design. 2nd ed. New York:John-Wiley & Sons, 2002
[10]
Tang A Y. Modelling of terahertz planar Schottky diodes. PhD Dissertation, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden, 2011 http://publications.lib.chalmers.se/publication/148397
[11]
Nittono T, Ito H, Nakajima O. Non-alloyed ohmic contacts to n-GaAs using compositionally graded InGaAs layers. Jpn J Appl Phys, 1988, 27:1718 doi: 10.1143/JJAP.27.1718
[12]
Sotoodeh M, Khalid A H, Rezazadeh A A. Empirical low-field mobility model for Ⅲ-Ⅴ compounds applicable in device simulation codes. JAppl Phys, 2000, 87(6):2890 doi: 10.1063/1.372274
Fig. 1.  Equivalent circuit of the SBD.

Fig. 2.  Cross section of a InP-based SBD.

Fig. 3.  The photograph of the fabricated InP-based SBDs.

Fig. 4.  The forward $I$-$V$ curve of the SBD with an anode diameter of 2.0 $\mu$m.

Fig. 5.  $I$-$V$ curve of the SBD with a logarithm vertical coordinate.

Fig. 6.  $C_{\rm total}$ in a frequency range of 0-40 GHz.

Fig. 7.  The total capacitance as a function of the anode area.

Table 1.   The key parameters of all the devices with different Schottky anode diameters.

Table 2.   The measured and calculated results for the InP-based SBD with an anode diameter of 2 $\mu $m.

[1]
Liu L, Hesler J L, Xu H Y, et al. A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode. IEEE Microw Wireless Compon Lett, 2010, 20(9):504 doi: 10.1109/LMWC.2010.2055553
[2]
Semenov A, Cojocari O, Hübers H, et al. Application of zero-bias quasi-optical Schottky-diode detectors for monitoring short-pulse and weak terahertz radiation. IEEE Electron Device Lett, 2010, 31(7):674 doi: 10.1109/LED.2010.2048192
[3]
Siles J V, Grajal J, Carlo A D. Design of submillimeter Schottky mixers under flat-band conditions using an improved drift-diffusion model. IEEE Microw Wireless Compon Lett, 2009, 19(3):167 doi: 10.1109/LMWC.2009.2013741
[4]
Thomas B, Maestrini A, Gill J, et al. A broadband 835-900-GHz fundamental balanced mixer based on monolithic GaAs membrane Schottky diodes. IEEE Trans Microw Theory Tech, 2010, 58(7):1917 doi: 10.1109/TMTT.2010.2050181
[5]
Chattopadhyay G. Technology capabilities and performance of low power teraherz sources. IEEE Trans Terahertz Sci Technol, 2010, 1(1):33 http://ieeexplore.ieee.org/document/6005327/
[6]
Lee C, Ward J, Lin R, et al. A wafer-level diamond bonding process to improve power handling capability of submillimeter-wave Schottky diode frequency multiplies. Proceedings of IEEE MTT-S Digest, Boston, MA, USA, 2009:957 http://ieeexplore.ieee.org/document/5165857/
[7]
Sze S M. Physics of semiconductor devices. 2nd ed. New York:John-Wiley & Sons, 1981
[8]
Hesler J L, Crowe T W. Responsivity and noise measurements of zero-bias Schottky diode detectors. 18th Intel Symp Space Terahertz Tech, Pasadena, March 2007 http://vadiodes.com/VDI/pdf/VDI%20Detector%20Char%20ISSTT2007.pdf
[9]
Bahl I, Bhartia P. Microwave solid state circuit design. 2nd ed. New York:John-Wiley & Sons, 2002
[10]
Tang A Y. Modelling of terahertz planar Schottky diodes. PhD Dissertation, Department of Microtechnology and Nanoscience, Chalmers University of Technology, Göteborg, Sweden, 2011 http://publications.lib.chalmers.se/publication/148397
[11]
Nittono T, Ito H, Nakajima O. Non-alloyed ohmic contacts to n-GaAs using compositionally graded InGaAs layers. Jpn J Appl Phys, 1988, 27:1718 doi: 10.1143/JJAP.27.1718
[12]
Sotoodeh M, Khalid A H, Rezazadeh A A. Empirical low-field mobility model for Ⅲ-Ⅴ compounds applicable in device simulation codes. JAppl Phys, 2000, 87(6):2890 doi: 10.1063/1.372274
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2390 Times PDF downloads: 20 Times Cited by: 0 Times

    History

    Received: 03 December 2012 Revised: 19 December 2012 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jingtao Zhou, Chengyue Yang, Ji Ge, Zhi Jin. Planar InP-based Schottky barrier diodes for terahertz applications[J]. Journal of Semiconductors, 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003 J T Zhou, C Y Yang, J Ge, Z Jin. Planar InP-based Schottky barrier diodes for terahertz applications[J]. J. Semicond., 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003.Export: BibTex EndNote
      Citation:
      Jingtao Zhou, Chengyue Yang, Ji Ge, Zhi Jin. Planar InP-based Schottky barrier diodes for terahertz applications[J]. Journal of Semiconductors, 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003

      J T Zhou, C Y Yang, J Ge, Z Jin. Planar InP-based Schottky barrier diodes for terahertz applications[J]. J. Semicond., 2013, 34(6): 064003. doi: 10.1088/1674-4926/34/6/064003.
      Export: BibTex EndNote

      Planar InP-based Schottky barrier diodes for terahertz applications

      doi: 10.1088/1674-4926/34/6/064003
      Funds:

      the State Key Laboratory of Advanced Optical Communication System & Networks and the National Basic Research Program of China 2011CB301704

      Project supported by the State Key Laboratory of Advanced Optical Communication System & Networks and the National Basic Research Program of China (Nos. 2011CB301704, 2009CB320302)

      the State Key Laboratory of Advanced Optical Communication System & Networks and the National Basic Research Program of China 2009CB320302

      More Information
      • Corresponding author: Jin Zhi, Email:jinzhi@ime.ac.cn
      • Received Date: 2012-12-03
      • Revised Date: 2012-12-19
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return