SEMICONDUCTOR INTEGRATED CIRCUITS

A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation

Chunhong Zhang1, 2, Haigang Yang1, and Richard Shi3

+ Author Affiliations

 Corresponding author: Yang Haigang, Email:yanghg@mail.ie.ac.cn

PDF

Abstract: A synchronous buck DC-DC converter with an adaptive multi-mode controller is proposed. In order to achieve high efficiency over its entire load range, pulse-width modulation (PWM), pulse-skip modulation (PSM) and pulse-frequency modulation (PFM) modes were integrated in the proposed DC-DC converter. With a highly accurate current sensor and a dynamic mode controller on chip, the converter can dynamically change among PWM, PSM and PFM control according to the load requirements. In addition, to avoid power device damage caused by inrush current at the start up state, a soft-start circuit is presented to suppress the inrush current. Furthermore, an adaptive slope compensation (SC) technique is proposed to stabilize the current programmed PWM controller for duty cycle passes over 50%, and improve the degraded load capability due to traditional slope compensation. The buck converter chip was simulated and manufactured under a 0.35 μm standard CMOS process. Experimental results show that the chip can achieve 79% to 91% efficiency over the load range of 0.1 to 1000 mA.

Key words: DC-DCmulti-modepeak current modeslope compensationsoft-start



[1]
Lee C F, Mok P K T. A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE J Solid-State Circuits, 2004, 39(1):3 http://www.wenkuxiazai.com/doc/d87a20c758f5f61fb7366694-2.html
[2]
Bandyopadhyay S, Ramadass Y K, Chandrakasan A P. 20μ A to 100 mA DC-DC converter with 2.8-4.2 V battery supply for portable applications in 45 nm CMOS. IEEE J Solid-State Circuits, 2011, 46(12):2807 doi: 10.1109/JSSC.2011.2162914
[3]
Sahu B, Rincón-Mora G A. An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control. IEEE Trans Circuits Syst I, 2007, 54(2):312 doi: 10.1109/TCSI.2006.887472
[4]
Chang R C H, Chen H M, Chia C H, et al. An exact current-mode PFM boost converter with dynamic stored energy technique. IEEE Trans Power Electron, 2009, 24(4):1129 doi: 10.1109/TPEL.2008.2011486
[5]
Ma F F, Chen W Z, Wu J C. A monolithic current-mode buck converter with advanced control and protection circuits. IEEE Trans Power Electron, 2007, 22(5):1836 doi: 10.1109/TPEL.2007.904237
[6]
Huang H W, Chen K H, Kuo S Y. Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications. IEEE J Solid-State Circuits, 2007, 42(11):2451 doi: 10.1109/JSSC.2007.907175
[7]
Luo P, Deng W, Li H, et al. High energy efficiency PSM/PWM dual-mode for DC-DC converter in portable applications. Electron Lett, 2008, 44(9):702 doi: 10.1080/00207217.2016.1253783
[8]
Liou W R, Yeh M L, Kuo Y L. A high efficiency dual-mode buck converter IC for portable applications. IEEE Trans Power Electron, 2008, 23(2):667 doi: 10.1109/TPEL.2007.915047
[9]
Erickson R W, Maksimovic D. Fundamentals of power electronics. Norwell, MA:Kluwer, 2001
[10]
Ryu Y C, Hwang Y W. A new soft-start method with abnormal over-current protection functions for switching power supplies. IEEE International Conference on Elect Mach Drives, 2005:421 http://www.ti.com/lit/ug/tidu248/tidu248.pdf
[11]
Al-Shyoukh M, Lee H. A compact ramp-based soft-start circuit for voltage regulators. IEEE Trans Circuits Syst Ⅱ:Express Briefs, 2009, 56(7):535 doi: 10.1109/TCSII.2009.2022205
[12]
Cheng K H, Su C W, Ko H H. A high-accuracy and high-efficiency on-chip current sensing for current-mode control CMOS DC-DC buck converter. IEEE International Conference on Electronics, Circuits and Systems, 2008:458 http://www.nsfc.gov.cn/Portals/0/fj/english/fj/pdf/2008/021.doc
[13]
Tang X, Pun K P. High-performance CMOS current comparator. Electron Lett, 2009, 45(20):1007 https://koreauniv.pure.elsevier.com/en/publications/high-performance-cmos-current-comparator-using-resistive-feedback
[14]
Sase T, Murabayashi F, Kikuchi M. Soft start circuit for switching power supply. US Patent, No. 6377480, 2002 http://www.vptpower.com/wp-content/uploads/downloads/2012/01/info_inrushCurrent.pdf
[15]
Samanta S, Patra P, Mukhopadhyay S, et al. Optimal slope compensation for step load in peak current controlled DC-DC buck converter. Power Electronics and Motion Control Conference, 2008, 1:485
[16]
Lu J Y, Wu X B. A novel piecewise linear slope compensation circuit in peak current mode control. IEEE International Conference on Electron Devices and Solid-State Circuits, 2007:929
[17]
Li Y M, Lai X Q, Chen F J, et al. An adaptive slope compensation circuit for buck DC-DC converter. ASICON 7th International Conference, 2007:608 doi: 10.1007/978-3-642-34381-0_10
[18]
Sakurai H, Sugimoto Y. Design of a current-mode, MOS, DC-DC buck converter with an adaptive slope compensation scheme. 48th Midwest Symposium on Circuits and Systems, 2005, 1:671 http://www.ti.com/lit/an/snva555/snva555.pdf
Fig. 1.  System diagram of the proposed converter.

Fig. 2.  Proposed on-chip current-sensor.

Fig. 3.  Proposed dynamic mode controller.

Fig. 4.  (a) Conventional VTI. (b) Proposed VTI.

Fig. 5.  Schematic of the current comparator for the mode controller.

Fig. 6.  (a) $I_{\rm sense}$ < $I_{\rm ref}$. (b) $I_{\rm sense}$ $>$ $I_{\rm ref}$.

Fig. 7.  The soft-start circuit.

Fig. 8.  The architecture of the proposed adaptive slope compensation.

Fig. 9.  (a) Micro photograph of the DC–DC converter. (b) Test board for the DC–DC converter.

Fig. 10.  Steady state waveforms. (a) PWM mode. (b) PSM mode. (C) PFM mode.

Fig. 11.  Mode transition waveform of the DC–DC converter.

Fig. 12.  Soft-start waveform of the DC–DC converter.

Fig. 13.  The converter's steady state with the proposed slope compensation.

Fig. 14.  Measured efficiency, $V_{\rm in}$ $=$ 3 V, $V_{\rm out}$ $=$ 1.8 V.

Table 1.   Mode selection table.

Table 2.   Performance comparisons.

[1]
Lee C F, Mok P K T. A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE J Solid-State Circuits, 2004, 39(1):3 http://www.wenkuxiazai.com/doc/d87a20c758f5f61fb7366694-2.html
[2]
Bandyopadhyay S, Ramadass Y K, Chandrakasan A P. 20μ A to 100 mA DC-DC converter with 2.8-4.2 V battery supply for portable applications in 45 nm CMOS. IEEE J Solid-State Circuits, 2011, 46(12):2807 doi: 10.1109/JSSC.2011.2162914
[3]
Sahu B, Rincón-Mora G A. An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control. IEEE Trans Circuits Syst I, 2007, 54(2):312 doi: 10.1109/TCSI.2006.887472
[4]
Chang R C H, Chen H M, Chia C H, et al. An exact current-mode PFM boost converter with dynamic stored energy technique. IEEE Trans Power Electron, 2009, 24(4):1129 doi: 10.1109/TPEL.2008.2011486
[5]
Ma F F, Chen W Z, Wu J C. A monolithic current-mode buck converter with advanced control and protection circuits. IEEE Trans Power Electron, 2007, 22(5):1836 doi: 10.1109/TPEL.2007.904237
[6]
Huang H W, Chen K H, Kuo S Y. Dithering skip modulation, width and dead time controllers in highly efficient DC-DC converters for system-on-chip applications. IEEE J Solid-State Circuits, 2007, 42(11):2451 doi: 10.1109/JSSC.2007.907175
[7]
Luo P, Deng W, Li H, et al. High energy efficiency PSM/PWM dual-mode for DC-DC converter in portable applications. Electron Lett, 2008, 44(9):702 doi: 10.1080/00207217.2016.1253783
[8]
Liou W R, Yeh M L, Kuo Y L. A high efficiency dual-mode buck converter IC for portable applications. IEEE Trans Power Electron, 2008, 23(2):667 doi: 10.1109/TPEL.2007.915047
[9]
Erickson R W, Maksimovic D. Fundamentals of power electronics. Norwell, MA:Kluwer, 2001
[10]
Ryu Y C, Hwang Y W. A new soft-start method with abnormal over-current protection functions for switching power supplies. IEEE International Conference on Elect Mach Drives, 2005:421 http://www.ti.com/lit/ug/tidu248/tidu248.pdf
[11]
Al-Shyoukh M, Lee H. A compact ramp-based soft-start circuit for voltage regulators. IEEE Trans Circuits Syst Ⅱ:Express Briefs, 2009, 56(7):535 doi: 10.1109/TCSII.2009.2022205
[12]
Cheng K H, Su C W, Ko H H. A high-accuracy and high-efficiency on-chip current sensing for current-mode control CMOS DC-DC buck converter. IEEE International Conference on Electronics, Circuits and Systems, 2008:458 http://www.nsfc.gov.cn/Portals/0/fj/english/fj/pdf/2008/021.doc
[13]
Tang X, Pun K P. High-performance CMOS current comparator. Electron Lett, 2009, 45(20):1007 https://koreauniv.pure.elsevier.com/en/publications/high-performance-cmos-current-comparator-using-resistive-feedback
[14]
Sase T, Murabayashi F, Kikuchi M. Soft start circuit for switching power supply. US Patent, No. 6377480, 2002 http://www.vptpower.com/wp-content/uploads/downloads/2012/01/info_inrushCurrent.pdf
[15]
Samanta S, Patra P, Mukhopadhyay S, et al. Optimal slope compensation for step load in peak current controlled DC-DC buck converter. Power Electronics and Motion Control Conference, 2008, 1:485
[16]
Lu J Y, Wu X B. A novel piecewise linear slope compensation circuit in peak current mode control. IEEE International Conference on Electron Devices and Solid-State Circuits, 2007:929
[17]
Li Y M, Lai X Q, Chen F J, et al. An adaptive slope compensation circuit for buck DC-DC converter. ASICON 7th International Conference, 2007:608 doi: 10.1007/978-3-642-34381-0_10
[18]
Sakurai H, Sugimoto Y. Design of a current-mode, MOS, DC-DC buck converter with an adaptive slope compensation scheme. 48th Midwest Symposium on Circuits and Systems, 2005, 1:671 http://www.ti.com/lit/an/snva555/snva555.pdf
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2934 Times PDF downloads: 29 Times Cited by: 0 Times

    History

    Received: 19 December 2012 Revised: 09 January 2013 Online: Published: 01 June 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Chunhong Zhang, Haigang Yang, Richard Shi. A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation[J]. Journal of Semiconductors, 2013, 34(6): 065003. doi: 10.1088/1674-4926/34/6/065003 C H Zhang, H G Yang, R Shi. A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation[J]. J. Semicond., 2013, 34(6): 065003. doi: 10.1088/1674-4926/34/6/065003.Export: BibTex EndNote
      Citation:
      Chunhong Zhang, Haigang Yang, Richard Shi. A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation[J]. Journal of Semiconductors, 2013, 34(6): 065003. doi: 10.1088/1674-4926/34/6/065003

      C H Zhang, H G Yang, R Shi. A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation[J]. J. Semicond., 2013, 34(6): 065003. doi: 10.1088/1674-4926/34/6/065003.
      Export: BibTex EndNote

      A wide load range, multi-mode synchronous buck DC-DC converter with a dynamic mode controller and adaptive slope compensation

      doi: 10.1088/1674-4926/34/6/065003
      Funds:

      by the CAS/SAFEA International Partnership Program for Creative Research Teams. 

      the Major National Scientific Research Plan, China 2011CB933202

      Project supported by the Major National Scientific Research Plan, China (No. 2011CB933202) and by the CAS/SAFEA International Partnership Program for Creative Research Teams

      More Information
      • Corresponding author: Yang Haigang, Email:yanghg@mail.ie.ac.cn
      • Received Date: 2012-12-19
      • Revised Date: 2013-01-09
      • Published Date: 2013-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return