SEMICONDUCTOR DEVICES

A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors

Liyuan Yang1, , Shan Ai1, Yonghe Chen1, Mengyi Cao1, Kai Zhang1, Xiaohua Ma1, 2 and Yue Hao1

+ Author Affiliations

 Corresponding author: Yang Liyuan, Email:youngyly@163.com

PDF

Abstract: Self-heating in multi-finger AlGaN/GaN high-electron-mobility transistors (HEMTs) is investigated by measurements and modeling of device junction temperature under steady-state operation. Measurements are carried out using micro-Raman scattering to obtain the detailed and accurate temperature distribution of the device. The device peak temperature corresponds to the high field region at the drain side of gate edge. The channel temperature of the device is modeled using a combined electro-thermal model considering 2DEG transport characteristics and the Joule heating power distribution. The results reveal excellent correlation to the micro-Raman measurements, validating our model for the design of better cooled structures. Furthermore, the influence of layout design on the channel temperature of multi-finger AlGaN/GaN HEMTs is studied using the proposed electro-thermal model, allowing for device optimization.

Key words: AlGaN/GaN high electron mobility transistorselectro-thermal simulationRaman spectroscopychannel temperature



[1]
Khan M A, Kuznia J N, van Hove J M, et al. Observation of a two-dimensional electron gas in low pressure metal organic chemical vapor deposited GaN/AlGaN hetero-junctions. Appl Phys Lett, 1992, 60(24):3027 doi: 10.1063/1.106798
[2]
Wu Y F., Keller B P, Fini P, et al. High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett, 1998, 19(2):50 doi: 10.1109/55.658600
[3]
Wang Dongfang, Chen Xiaojuan, Liu Xinyu. A Ku-band 3.4 W/mm power AlGaN/GaN HEMT on a sapphire substrate. Journal of Semiconductors, 2010, 31(2):024001 doi: 10.1088/1674-4926/31/2/024001
[4]
Yang Liyuan, Hao Yue, Ma Xiaohua, et al. High temperature characteristics of AlGaN/GaN high electron mobility transistors. Chin Phys B, 2011, 20(11):117302 doi: 10.1088/1674-1056/20/11/117302
[5]
Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett, 2002, 23(1):7 doi: 10.1109/55.974795
[6]
Rajasingam S, Pomeroy J W, Kuball M, et al. Micro-Raman temperature measurements for electric field assessment in active AlGaN-GaN HFETs. IEEE Electron Device Lett, 2004, 25(7):456 doi: 10.1109/LED.2004.830267
[7]
Yang Liyuan, Xue Xiaoyong, Zhang Kai, et al. Channel temperature determination of multifinger AlGaN/GaN high electron mobility transistor using micro-Raman technique. Chin Phys B, 2012, 21(7):077304 doi: 10.1088/1674-1056/21/7/077304
[8]
Das J, Oprins H, Hangfeng J, et al. Improved thermal performance of AlGaN/GaN HEMTs by an optimized flip-chip design. IEEE Trans Electron Devices, 2006, 53(11):2696 doi: 10.1109/TED.2006.883944
[9]
Florescu D I, Asnin V M, Pollak F H, et al. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Appl Phys Lett, 2000, 77(10):1464 doi: 10.1063/1.1308057
Fig. 1.  Transfer characteristic of the GaN HEMT at $V_{\rm drain}$ $=$ 15 V.

Fig. 2.  Temperature dependence of the GaN E$_{2}^{\rm H}$ phonon frequency. The inset illustrates the Raman spectra of GaN at rising temperature.

Fig. 3.  Measured temperature of the 40 $\times$ 150 $\mu$m$^2$ multi-finger AlGaN/GaN HEMT using the micro-Raman technique.

Fig. 4.  Micro-Raman temperature scanning in the source-drain gap of the same device[7].

Fig. 5.  (a) Cross section of the simulated power density illustrating the presence of a power spike under drive conditions used in the Raman studies. (b) Power density along the channel.

Fig. 6.  Simulated 3D structure represents 1/4 of a multi-finger AlGaN/GaN HEMT.

Fig. 7.  Simulated temperature distribution for the device under the drive condition used in the Raman study ($V_{\rm G}$ $=$ $-1.2$ V, $V_{\rm D}$ $=$ 15 V).

Fig. 8.  (a) Simulated and measured temperature profile perpendicular to the gate fingers under an identical bias condition. (b) Simulated and measured temperature versus dissipated power for the multi-finger device.

Fig. 9.  (a) The channel temperature as a function of gate pitch separation and (b) single-finger width for the 6 mm AlGaN/GaN HEMT at a power dissipation of 2 W/mm.

Table 1.   Thermal conductivity and thickness of the materials used in the simulation.

[1]
Khan M A, Kuznia J N, van Hove J M, et al. Observation of a two-dimensional electron gas in low pressure metal organic chemical vapor deposited GaN/AlGaN hetero-junctions. Appl Phys Lett, 1992, 60(24):3027 doi: 10.1063/1.106798
[2]
Wu Y F., Keller B P, Fini P, et al. High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett, 1998, 19(2):50 doi: 10.1109/55.658600
[3]
Wang Dongfang, Chen Xiaojuan, Liu Xinyu. A Ku-band 3.4 W/mm power AlGaN/GaN HEMT on a sapphire substrate. Journal of Semiconductors, 2010, 31(2):024001 doi: 10.1088/1674-4926/31/2/024001
[4]
Yang Liyuan, Hao Yue, Ma Xiaohua, et al. High temperature characteristics of AlGaN/GaN high electron mobility transistors. Chin Phys B, 2011, 20(11):117302 doi: 10.1088/1674-1056/20/11/117302
[5]
Kuball M, Hayes J M, Uren M J, et al. Measurement of temperature in active high-power AlGaN/GaN HFETs using Raman spectroscopy. IEEE Electron Device Lett, 2002, 23(1):7 doi: 10.1109/55.974795
[6]
Rajasingam S, Pomeroy J W, Kuball M, et al. Micro-Raman temperature measurements for electric field assessment in active AlGaN-GaN HFETs. IEEE Electron Device Lett, 2004, 25(7):456 doi: 10.1109/LED.2004.830267
[7]
Yang Liyuan, Xue Xiaoyong, Zhang Kai, et al. Channel temperature determination of multifinger AlGaN/GaN high electron mobility transistor using micro-Raman technique. Chin Phys B, 2012, 21(7):077304 doi: 10.1088/1674-1056/21/7/077304
[8]
Das J, Oprins H, Hangfeng J, et al. Improved thermal performance of AlGaN/GaN HEMTs by an optimized flip-chip design. IEEE Trans Electron Devices, 2006, 53(11):2696 doi: 10.1109/TED.2006.883944
[9]
Florescu D I, Asnin V M, Pollak F H, et al. Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Appl Phys Lett, 2000, 77(10):1464 doi: 10.1063/1.1308057
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2998 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 09 November 2012 Revised: 12 December 2012 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors[J]. Journal of Semiconductors, 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005 L Y Yang, S Ai, Y H Chen, M Y Cao, K Zhang, X H Ma, Y Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors[J]. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005.Export: BibTex EndNote
      Citation:
      Liyuan Yang, Shan Ai, Yonghe Chen, Mengyi Cao, Kai Zhang, Xiaohua Ma, Yue Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors[J]. Journal of Semiconductors, 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005

      L Y Yang, S Ai, Y H Chen, M Y Cao, K Zhang, X H Ma, Y Hao. A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors[J]. J. Semicond., 2013, 34(7): 074005. doi: 10.1088/1674-4926/34/7/074005.
      Export: BibTex EndNote

      A self-heating study on multi-finger AlGaN/GaN high electron mobility transistors

      doi: 10.1088/1674-4926/34/7/074005
      Funds:

      the National Natural Science Foundation of China 61106106

      the National Basic Research Program of China 2011CBA00606

      Project supported by the National Basic Research Program of China (No. 2011CBA00606) and the National Natural Science Foundation of China (No. 61106106)

      More Information
      • Corresponding author: Yang Liyuan, Email:youngyly@163.com
      • Received Date: 2012-11-09
      • Revised Date: 2012-12-12
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return