SEMICONDUCTOR INTEGRATED CIRCUITS

A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors

Yu Ye1, 2, and Tong Tian3

+ Author Affiliations

 Corresponding author: Ye Yu, Email:yye@mail.sim.ac.cn

PDF

Abstract: A 50 GHz cross-coupled voltage controlled oscillator (VCO) considering the coupling effect of inductors based on a 65 nm standard complementary metal oxide semiconductor (CMOS) technology is reported. A pair of inductors has been fabricated, measured and analyzed to characterize the coupling effects of adjacent inductors. The results are then implemented to accurately evaluate the VCO's LC tank. By optimizing the tank voltage swing and the buffer's operation region, the VCO achieves a maximum efficiency of 11.4% by generating an average output power of 2.5 dBm while only consuming 19.7 mW (including buffers). The VCO exhibits a phase noise of-87 dBc/Hz at 1 MHz offset, leading to a figure of merit (FoM) of-167.5 dB/Hz and a tuning range of 3.8% (from 48.98 to 50.88 GHz).

Key words: CMOScoupling effectsinductorsLC tankVCO



[1]
Hsieh H H, Lu L H. A V-band CMOS VCO with an admittance-transforming cross-coupled pair. IEEE J Solid-State Circuits, 2009, 44(6):1689 doi: 10.1109/JSSC.2009.2020203
[2]
Cao C, Kenneth K O. Millimeter-wave voltage-controlled oscillators in 0.13μm CMOS technology. IEEE J Solid-State Circuits, 2006, 41(6):1297 doi: 10.1109/JSSC.2006.874321
[3]
Huang G C, Kim S K, Gao Z Q, et al. A 45 GHz CMOS VCO adopting digitally switchable metal-oxide-metal capacitors. IEEE Microw Wireless Compon Lett, 2011, 21(5):270 doi: 10.1109/LMWC.2011.2124449
[4]
Kang K, Tan C J, Brinkhoff J, et al. Coupling effects between on-chip inductors in the millimeter-wave regime. IEEE Electron Device Lett, 2010, 31(4):362 doi: 10.1109/LED.2010.2041426
[5]
Yin W Y, Pan S J, Li L W, et al. Experimental characterization of coupling effects between two on-chip neighboring square inductors. IEEE Trans Electromagnetic Compatibility, 2003, 45(3):557 doi: 10.1109/TEMC.2003.815597
[6]
Gonzalez J L, Badets F, Martineau B, et al. A 56 GHz LC-tank VCO with 17% tuning range in 65 nm bulk CMOS for wireless HDMI. IEEE Trans Microw Theory Tech, 2010, 58(5):1359 doi: 10.1109/TMTT.2010.2042853
[7]
Kim N, Oh Y, Rieh J S. A 47 GHz LC cross-coupled VCO employing high-Q island-gate varactor for phase noise reduction. IEEE Microw Wireless Compon Lett, 2010, 20(2):94 doi: 10.1109/LMWC.2009.2038522
[8]
Kraemer M, Dragomirescu D, Plana R. A high efficiency differential 60 GHz VCO in a 65 nm CMOS technology for WSN applications. IEEE Microw Wireless Compon Lett, 2011, 21(6):314 doi: 10.1109/LMWC.2011.2134841
[9]
Hajimiri A, Lee T H. Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits, 1999, 34(5):717 doi: 10.1109/4.760384
[10]
Chiu H C, Kao C P. A wide tuning range 69 GHz push-push VCO using 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2010, 20(2):97 doi: 10.1109/LMWC.2009.2038523
[11]
Li L, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank. IEEE J Solid-State Circuits, 2009, 44(7):1950 doi: 10.1109/JSSC.2009.2020245
Fig. 1.  Microphotographs of the element inductor and the cascaded inductor. (a) Element inductor. (b) Cascaded inductor.

Fig. 2.  The structure and simulated results of the tank inductor. (a) Simulated model of the tank inductor. (b) Simulated $L_{\rm eff}$ and $Q_{\rm eff}$ of the tank inductor with/without coupling effects.

Fig. 3.  Simulated and measured $L_{\rm eff}$ and $Q_{\rm eff}$ with/without coupling effects.

Fig. 4.  The topology of the 50 GHz cross-coupled VCO with buffers.

Fig. 5.  The structure and simulated results of the tank inductor. (a) Simulated model of the tank inductor. (b) Simulated $L_{\rm eff}$ and $Q_{\rm eff}$ of the tank inductor with/without coupling effects.

Fig. 6.  The equivalent half circuit of the LC tank.

Fig. 7.  Configuration of capacitors in the LC tank.

Fig. 8.  The circuit topology of the output buffer (one side).

Fig. 9.  Microphotograph of the proposed VCO.

Fig. 10.  Simulated and measured frequency and output power tuning curve. (a) Oscillation frequency. (b) Output power. (One-side output)

Fig. 11.  Measured phase noise of the proposed VCO at 50.88 GHz.

Table 1.   Compared performance of VCOS.

[1]
Hsieh H H, Lu L H. A V-band CMOS VCO with an admittance-transforming cross-coupled pair. IEEE J Solid-State Circuits, 2009, 44(6):1689 doi: 10.1109/JSSC.2009.2020203
[2]
Cao C, Kenneth K O. Millimeter-wave voltage-controlled oscillators in 0.13μm CMOS technology. IEEE J Solid-State Circuits, 2006, 41(6):1297 doi: 10.1109/JSSC.2006.874321
[3]
Huang G C, Kim S K, Gao Z Q, et al. A 45 GHz CMOS VCO adopting digitally switchable metal-oxide-metal capacitors. IEEE Microw Wireless Compon Lett, 2011, 21(5):270 doi: 10.1109/LMWC.2011.2124449
[4]
Kang K, Tan C J, Brinkhoff J, et al. Coupling effects between on-chip inductors in the millimeter-wave regime. IEEE Electron Device Lett, 2010, 31(4):362 doi: 10.1109/LED.2010.2041426
[5]
Yin W Y, Pan S J, Li L W, et al. Experimental characterization of coupling effects between two on-chip neighboring square inductors. IEEE Trans Electromagnetic Compatibility, 2003, 45(3):557 doi: 10.1109/TEMC.2003.815597
[6]
Gonzalez J L, Badets F, Martineau B, et al. A 56 GHz LC-tank VCO with 17% tuning range in 65 nm bulk CMOS for wireless HDMI. IEEE Trans Microw Theory Tech, 2010, 58(5):1359 doi: 10.1109/TMTT.2010.2042853
[7]
Kim N, Oh Y, Rieh J S. A 47 GHz LC cross-coupled VCO employing high-Q island-gate varactor for phase noise reduction. IEEE Microw Wireless Compon Lett, 2010, 20(2):94 doi: 10.1109/LMWC.2009.2038522
[8]
Kraemer M, Dragomirescu D, Plana R. A high efficiency differential 60 GHz VCO in a 65 nm CMOS technology for WSN applications. IEEE Microw Wireless Compon Lett, 2011, 21(6):314 doi: 10.1109/LMWC.2011.2134841
[9]
Hajimiri A, Lee T H. Design issues in CMOS differential LC oscillators. IEEE J Solid-State Circuits, 1999, 34(5):717 doi: 10.1109/4.760384
[10]
Chiu H C, Kao C P. A wide tuning range 69 GHz push-push VCO using 0.18μm CMOS technology. IEEE Microw Wireless Compon Lett, 2010, 20(2):97 doi: 10.1109/LMWC.2009.2038523
[11]
Li L, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-wave oscillator using inductive-division LC tank. IEEE J Solid-State Circuits, 2009, 44(7):1950 doi: 10.1109/JSSC.2009.2020245
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1864 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 26 November 2012 Revised: 27 January 2013 Online: Published: 01 July 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yu Ye, Tong Tian. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors[J]. Journal of Semiconductors, 2013, 34(7): 075001. doi: 10.1088/1674-4926/34/7/075001 Y Ye, T Tian. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors[J]. J. Semicond., 2013, 34(7): 075001. doi: 10.1088/1674-4926/34/7/075001.Export: BibTex EndNote
      Citation:
      Yu Ye, Tong Tian. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors[J]. Journal of Semiconductors, 2013, 34(7): 075001. doi: 10.1088/1674-4926/34/7/075001

      Y Ye, T Tian. A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors[J]. J. Semicond., 2013, 34(7): 075001. doi: 10.1088/1674-4926/34/7/075001.
      Export: BibTex EndNote

      A 65 nm CMOS high efficiency 50 GHz VCO with regard to the coupling effect of inductors

      doi: 10.1088/1674-4926/34/7/075001
      Funds:

      the Special Fund on IOT Technology Research from China Government YORSKB1001

      Project supported by the Special Fund on IOT Technology Research from China Government (No. YORSKB1001)

      More Information
      • Corresponding author: Ye Yu, Email:yye@mail.sim.ac.cn
      • Received Date: 2012-11-26
      • Revised Date: 2013-01-27
      • Published Date: 2013-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return