SEMICONDUCTOR PHYSICS

Averaged hole mobility model of biaxially strained Si

Jianjun Song1, , He Zhu1, Jinyong Yang2, Heming Zhang1, Rongxi Xuan1 and Huiyong Hu1

+ Author Affiliations

 Corresponding author: Song Jianjun, Email:jianjun_79_81@xidian.edu.cn

PDF

Abstract: We aim to establish a model of the averaged hole mobility of strained Si grown on (001), (101), and (111) relaxed Si1-xGex substrates. The results obtained from our calculation show that their hole mobility values corresponding to strained Si (001), (101) and (111) increase by at most about three, two and one times, respectively, in comparison with the unstrained Si. The results can provide a valuable reference to the understanding and design of strained Si-based device physics.

Key words: strainmodelmobility



[1]
Olsen S H, Yan L, Aqaiby R, et al. Strained Si/SiGe MOS technology:improving gate dielectric integrity. Microelectron Eng, 2009, 86(3):218 doi: 10.1016/j.mee.2008.08.001
[2]
Paul D J. Si/SiGe heterostructures:from material and physics to devices and circuits. Semicond Sci Technol, 2004, 19(10):75 doi: 10.1088/0268-1242/19/10/R02
[3]
Guillaume T, Mouis M. Calculations of hole mass in-uniaxially strained silicon for the stress-engineering of p-MOS transistors. Solid-State Electron, 2006, 50(4):701 doi: 10.1016/j.sse.2006.03.040
[4]
Song J J, Zhang H M, Hu H Y, et al. Determination of conduction band edge characteristics of strained Si/Si1-xGex. Chin Phys, 2007, 16:3827 doi: 10.1088/1009-1963/16/12/045
[5]
Destefanis V, Rouchon D, Hartmann J M, et al. Structural properties of tensily strained Si layers grown on SiGe (100), (110), and (111) virtual substrates. J Appl Phys, 2009, 106:043508 doi: 10.1063/1.3187925
[6]
Song Jianjun, Yang Chao, Zhang Heming, et al. Longitudinal, transverse, density-of-states, and conductivity masses of electron in (001), (101) and (111) biaxially-strained-Si and strained-Si1-xGex. Science in China, Physics Mechanics and Astronomy, 2012, 55(11):2033 doi: 10.1007/s11433-012-4879-2
[7]
Song J J, Zhang H M, Hu H Y. Calculation of band structure in (101)-biaxially strained Si. Sci China Ser G-Phys Mech Astron, 2009, 52:546 doi: 10.1007/s11433-009-0078-1
[8]
Song Jianjun, Zhang Heming, Dai Xianying, et al. Band structure of strained Si/(111) Si1-xGex:a first principles investigation. Acta Physica Sinica, 2008, 57(9):5918 https://ar.scribd.com/doc/210773456/All-Questions-Word-Count
[9]
Song J J, Zhang H M, Dian X Y, et al. Dispersion relation model of valence band in strained Si. Acta Physica Sinica. 2008, 57(11):7228 http://www.oalib.com/paper/1443499
[10]
Song Jianjun, Zhang Heming, Hu Huiyong, et al. Valence band structure of strained Si/(111) Si1-xGex. Sci China Ser G:Phys Mech Astron, 2010, 53:454 doi: 10.1007/s11433-010-0093-2
[11]
Song Jianjun, Zhang Heming, Hu Huiyong, et al. Hole mobility enhancement of Si by rhombohedral strain. Science in China, Physics Mechanics and Astronomy, 2012, 55(8):1399 doi: 10.1007/s11433-012-4755-0
[12]
Song J J, Zhang H M, Hu H Y, et al. Hole scattering mechanism in tetragonal strained Si. Acta Physica Sinica, 2012, 61(5):057304 http://wulixb.iphy.ac.cn/EN/Y2012/V61/I5/057304
Fig. 1.  The effective mass of the "heavy" and "light" holes in strained Si.

Fig. 2.  The DOS effective mass of the hole in strained Si.

Fig. 3.  The total scattering rate of the hole in strained Si.

Fig. 4.  The hole mobilities in strained Si.

Table 1.   he lattice parameter values of strained Si.

[1]
Olsen S H, Yan L, Aqaiby R, et al. Strained Si/SiGe MOS technology:improving gate dielectric integrity. Microelectron Eng, 2009, 86(3):218 doi: 10.1016/j.mee.2008.08.001
[2]
Paul D J. Si/SiGe heterostructures:from material and physics to devices and circuits. Semicond Sci Technol, 2004, 19(10):75 doi: 10.1088/0268-1242/19/10/R02
[3]
Guillaume T, Mouis M. Calculations of hole mass in-uniaxially strained silicon for the stress-engineering of p-MOS transistors. Solid-State Electron, 2006, 50(4):701 doi: 10.1016/j.sse.2006.03.040
[4]
Song J J, Zhang H M, Hu H Y, et al. Determination of conduction band edge characteristics of strained Si/Si1-xGex. Chin Phys, 2007, 16:3827 doi: 10.1088/1009-1963/16/12/045
[5]
Destefanis V, Rouchon D, Hartmann J M, et al. Structural properties of tensily strained Si layers grown on SiGe (100), (110), and (111) virtual substrates. J Appl Phys, 2009, 106:043508 doi: 10.1063/1.3187925
[6]
Song Jianjun, Yang Chao, Zhang Heming, et al. Longitudinal, transverse, density-of-states, and conductivity masses of electron in (001), (101) and (111) biaxially-strained-Si and strained-Si1-xGex. Science in China, Physics Mechanics and Astronomy, 2012, 55(11):2033 doi: 10.1007/s11433-012-4879-2
[7]
Song J J, Zhang H M, Hu H Y. Calculation of band structure in (101)-biaxially strained Si. Sci China Ser G-Phys Mech Astron, 2009, 52:546 doi: 10.1007/s11433-009-0078-1
[8]
Song Jianjun, Zhang Heming, Dai Xianying, et al. Band structure of strained Si/(111) Si1-xGex:a first principles investigation. Acta Physica Sinica, 2008, 57(9):5918 https://ar.scribd.com/doc/210773456/All-Questions-Word-Count
[9]
Song J J, Zhang H M, Dian X Y, et al. Dispersion relation model of valence band in strained Si. Acta Physica Sinica. 2008, 57(11):7228 http://www.oalib.com/paper/1443499
[10]
Song Jianjun, Zhang Heming, Hu Huiyong, et al. Valence band structure of strained Si/(111) Si1-xGex. Sci China Ser G:Phys Mech Astron, 2010, 53:454 doi: 10.1007/s11433-010-0093-2
[11]
Song Jianjun, Zhang Heming, Hu Huiyong, et al. Hole mobility enhancement of Si by rhombohedral strain. Science in China, Physics Mechanics and Astronomy, 2012, 55(8):1399 doi: 10.1007/s11433-012-4755-0
[12]
Song J J, Zhang H M, Hu H Y, et al. Hole scattering mechanism in tetragonal strained Si. Acta Physica Sinica, 2012, 61(5):057304 http://wulixb.iphy.ac.cn/EN/Y2012/V61/I5/057304
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2283 Times PDF downloads: 8 Times Cited by: 0 Times

    History

    Received: 06 November 2012 Revised: 01 March 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, Huiyong Hu. Averaged hole mobility model of biaxially strained Si[J]. Journal of Semiconductors, 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003 J J Song, H Zhu, J Y Yang, H M Zhang, R X Xuan, H Y Hu. Averaged hole mobility model of biaxially strained Si[J]. J. Semicond., 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003.Export: BibTex EndNote
      Citation:
      Jianjun Song, He Zhu, Jinyong Yang, Heming Zhang, Rongxi Xuan, Huiyong Hu. Averaged hole mobility model of biaxially strained Si[J]. Journal of Semiconductors, 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003

      J J Song, H Zhu, J Y Yang, H M Zhang, R X Xuan, H Y Hu. Averaged hole mobility model of biaxially strained Si[J]. J. Semicond., 2013, 34(8): 082003. doi: 10.1088/1674-4926/34/8/082003.
      Export: BibTex EndNote

      Averaged hole mobility model of biaxially strained Si

      doi: 10.1088/1674-4926/34/8/082003
      Funds:

      NLAIC Research Fund P140c090303110c0904

      Project supported by the Research Fund for the Doctoral Program of Higher Education of China (No. JY0300122503) and NLAIC Research Fund (No. P140c090303110c0904)

      the Research Fund for the Doctoral Program of Higher Education of China JY0300122503

      More Information
      • Corresponding author: Song Jianjun, Email:jianjun_79_81@xidian.edu.cn
      • Received Date: 2012-11-06
      • Revised Date: 2013-03-01
      • Published Date: 2013-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return