SEMICONDUCTOR MATERIALS

The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures

Jiajun Deng1, , Pei Chen1, Wenjie Wang1, Bing Hu1, Jiantao Che1, Lin Chen2, Hailong Wang2 and Jianhua Zhao2

+ Author Affiliations

 Corresponding author: Deng Jiajun, Email:djiaj@ncepu.edu.cn

PDF

Abstract: Fe/(Ga, Mn)As heterostructures were fabricated by all molecular-beam epitaxy. Double-crystal X-ray diffraction and high-resolution cross-sectional transmission electron micrographs show that the Fe layer has a well ordered crystal orientation and an abrupt interface. The different magnetic behavior between the Fe layer and (Ga, Mn)As layer is observed by superconducting quantum interference device magnetometry. X-ray photoelectron spectroscopy measurements indicate no Fe2As and Fe-Ga-As compounds, i.e., no dead magnetic layer at the interface, which strongly affects the magnetic proximity and the polarization of the Mn ion in a thin (Ga, Mn)As region near the interface of the Fe/(Ga, Mn)As heterostructure.

Key words: heterostructuresmagnetic semiconductorferromagnetic metalmolecular-beam epitaxy



[1]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281:951 doi: 10.1126/science.281.5379.951
[2]
Dietl T, Ohno H, Matsukura F, et al, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287:1019 doi: 10.1126/science.287.5455.1019
[3]
Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 2009, 95:182505 doi: 10.1063/1.3259821
[4]
Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11:2584 doi: 10.1021/nl201187m
[5]
Maccherozzi F, Sperl M, Panaccione G, et al. Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces. Phys Rev Lett, 2008, 101:267201 doi: 10.1103/PhysRevLett.101.267201
[6]
Sperl M, Maccherozzi F, Borgatti F, et al, Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures. Phys Rev B, 2010, 81:035211 doi: 10.1103/PhysRevB.81.035211
[7]
Kobayashi S, Suda K, Aoyama J, et al. Photo-induced precession of magnetization in metal/(Ga, Mn)As systems. IEEE Trans Magnetics, 2010, 46:2470 doi: 10.1109/TMAG.2010.2042289
[8]
Song C, Sperl M, Utz M, et al. Proximity induced enhancement of the Curie temperature in hybrid spin injection devices. Phys Rev Lett, 2011, 107:056601 doi: 10.1103/PhysRevLett.107.056601
[9]
Olejnik K, Wadley P, Haigh J A, et al. Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal:Fe/(Ga, Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry. Phys Rev B, 2010, 81:104402 doi: 10.1103/PhysRevB.81.104402
[10]
Men'shov V N, Tugushev V V, Caprara S, et al. Proximity-induced spin ordering at the interface between a ferromagnetic metal and a magnetic semiconductor. Phys Rev B, 2010, 81:235212 doi: 10.1103/PhysRevB.81.235212
[11]
Giovanelli L, Panaccione G, Rossi G, et al. Layer-selective spectroscopy of Fe/GaAs(001):Influence of the interface on the magnetic properties. Phys Rev B, 2005, 72:045221 doi: 10.1103/PhysRevB.72.045221
[12]
Lu J, Meng H J, Deng J J, et al. Strain and magnetic anisotropy of as-grown and annealed Fe films on c(4×4) reconstructed GaAs (001) surface. J Appl Phys, 2009, 106:013911 doi: 10.1063/1.3159642
[13]
Fleet L R, Kobayashi H, Ohno Y, et al. Interfacial structure and transport properties of Fe/GaAs(001). J Appl Phys, 2011, 109:07C504
[14]
Mirbt S, Sanyal B, Isheden C, et al. First-principles calculations of Fe on GaAs(100). Phys Rev B, 2003, 67:155421 doi: 10.1103/PhysRevB.67.155421
[15]
Filipe A, Schuhl A, Galtier P. Structure and magnetism of the Fe/GaAs interface. Appl Phys Lett, 1997, 70:129 doi: 10.1063/1.119284
[16]
Erwin S C, Lee S H, Scheffler M, et al. First-principles study of nucleation, growth, and interface structure of Fe/GaAs. Phys Rev B, 2002, 65:205422 doi: 10.1103/PhysRevB.65.205422
[17]
Freeland J W, Coulthard I, Antel W J Jr, et al. Interface bonding for Fe thin films on GaAs surfaces of differing morphology. Phys Rev B, 2001, 63:193301 doi: 10.1103/PhysRevB.63.193301
Fig. 1.  High-resolution cross sectional transmission electron micrograph image of the interfacial structure of sample B. The black horizontal line (bottom left) indicates the scale (5 nm).

Fig. 2.  The double crystal X-ray diffraction pattern for (a) sample A and (b) sample B.

Fig. 3.  Magnetic field dependence remanent magnetization curves of samples A (dashed line) and B (solid line) at 5 K under magnetic field parallel to the sample surface. The left inset is an enlargement of the sample A hysteresis loop around zero magnetic field at 5 K. The right inset shows the temperature dependence remanent magnetization curves of samples A and B from 5 to 200 K.

Fig. 4.  XPS spectra of a Fe/(Ga, Mn)As heterostructure. Figures (a), (b) and (c) show the binding energy dependence of photoelectron density corresponding to (a) Ga2p3, (b) Fe2p3, (c) As3d and (d) Mn2p3 core levels at different sputtering times. Insets of Figs. (a), (b) and (c) show the sputtering time dependence of XPS spectra peaks corresponding to Ga2p3, Fe2p3 and As3d core levels, respectively.

[1]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281:951 doi: 10.1126/science.281.5379.951
[2]
Dietl T, Ohno H, Matsukura F, et al, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287:1019 doi: 10.1126/science.287.5455.1019
[3]
Chen L, Yan S, Xu P F, et al. Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga, Mn)As films with high ferromagnetic transition temperature. Appl Phys Lett, 2009, 95:182505 doi: 10.1063/1.3259821
[4]
Chen L, Yang X, Yang F H, et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11:2584 doi: 10.1021/nl201187m
[5]
Maccherozzi F, Sperl M, Panaccione G, et al. Evidence for a magnetic proximity effect up to room temperature at Fe/(Ga, Mn)As interfaces. Phys Rev Lett, 2008, 101:267201 doi: 10.1103/PhysRevLett.101.267201
[6]
Sperl M, Maccherozzi F, Borgatti F, et al, Identifying the character of ferromagnetic Mn in epitaxial Fe/(Ga, Mn)As heterostructures. Phys Rev B, 2010, 81:035211 doi: 10.1103/PhysRevB.81.035211
[7]
Kobayashi S, Suda K, Aoyama J, et al. Photo-induced precession of magnetization in metal/(Ga, Mn)As systems. IEEE Trans Magnetics, 2010, 46:2470 doi: 10.1109/TMAG.2010.2042289
[8]
Song C, Sperl M, Utz M, et al. Proximity induced enhancement of the Curie temperature in hybrid spin injection devices. Phys Rev Lett, 2011, 107:056601 doi: 10.1103/PhysRevLett.107.056601
[9]
Olejnik K, Wadley P, Haigh J A, et al. Exchange bias in a ferromagnetic semiconductor induced by a ferromagnetic metal:Fe/(Ga, Mn)As bilayer films studied by XMCD measurements and SQUID magnetometry. Phys Rev B, 2010, 81:104402 doi: 10.1103/PhysRevB.81.104402
[10]
Men'shov V N, Tugushev V V, Caprara S, et al. Proximity-induced spin ordering at the interface between a ferromagnetic metal and a magnetic semiconductor. Phys Rev B, 2010, 81:235212 doi: 10.1103/PhysRevB.81.235212
[11]
Giovanelli L, Panaccione G, Rossi G, et al. Layer-selective spectroscopy of Fe/GaAs(001):Influence of the interface on the magnetic properties. Phys Rev B, 2005, 72:045221 doi: 10.1103/PhysRevB.72.045221
[12]
Lu J, Meng H J, Deng J J, et al. Strain and magnetic anisotropy of as-grown and annealed Fe films on c(4×4) reconstructed GaAs (001) surface. J Appl Phys, 2009, 106:013911 doi: 10.1063/1.3159642
[13]
Fleet L R, Kobayashi H, Ohno Y, et al. Interfacial structure and transport properties of Fe/GaAs(001). J Appl Phys, 2011, 109:07C504
[14]
Mirbt S, Sanyal B, Isheden C, et al. First-principles calculations of Fe on GaAs(100). Phys Rev B, 2003, 67:155421 doi: 10.1103/PhysRevB.67.155421
[15]
Filipe A, Schuhl A, Galtier P. Structure and magnetism of the Fe/GaAs interface. Appl Phys Lett, 1997, 70:129 doi: 10.1063/1.119284
[16]
Erwin S C, Lee S H, Scheffler M, et al. First-principles study of nucleation, growth, and interface structure of Fe/GaAs. Phys Rev B, 2002, 65:205422 doi: 10.1103/PhysRevB.65.205422
[17]
Freeland J W, Coulthard I, Antel W J Jr, et al. Interface bonding for Fe thin films on GaAs surfaces of differing morphology. Phys Rev B, 2001, 63:193301 doi: 10.1103/PhysRevB.63.193301
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2340 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 24 January 2013 Revised: 25 March 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures[J]. Journal of Semiconductors, 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003 J J Deng, P Chen, W J Wang, B Hu, J T Che, L Chen, H L Wang, J H Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures[J]. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003.Export: BibTex EndNote
      Citation:
      Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures[J]. Journal of Semiconductors, 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

      J J Deng, P Chen, W J Wang, B Hu, J T Che, L Chen, H L Wang, J H Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures[J]. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003.
      Export: BibTex EndNote

      The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures

      doi: 10.1088/1674-4926/34/8/083003
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61076117, 60836002) and the Fundamental Research Funds for the Central Universities (No. 11ML33)

      the National Natural Science Foundation of China . 60836002

      the Fundamental Research Funds for the Central Universities 11ML33

      the National Natural Science Foundation of China . 61076117

      More Information
      • Corresponding author: Deng Jiajun, Email:djiaj@ncepu.edu.cn
      • Received Date: 2013-01-24
      • Revised Date: 2013-03-25
      • Published Date: 2013-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return