SEMICONDUCTOR INTEGRATED CIRCUITS

A low power 2.4 GHz transceiver for ZigBee applications

Weiyang Liu, Jingjing Chen, Haiyong Wang and Nanjian Wu

+ Author Affiliations

 Corresponding author: Wu Nanjian, Email:nanjian@semi.ac.cn

PDF

Abstract: This paper presents a low power 2.4 GHz transceiver for ZigBee applications. This transceiver adopts low power system architecture with a low-IF receiver and a direct-conversion transmitter. The receiver consists of a new low noise amplifier (LNA) with a noise cancellation function, a new inverter-based variable gain complex filter (VGCF) for image rejection, a passive quadrature mixer, and a decibel linear programmable gain amplifier (PGA). The transmitter adopts a quadrature mixer and a class-B mode variable gain power amplifier (PA) to reduce power consumption. This transceiver is implemented in 0.18 μm CMOS technology. The receiver achieves -95 dBm of sensitivity, 28 dBc of image rejection, and -8 dBm of third-order input intercept point (ⅡP3). The transmitter can deliver a maximum of +3 dBm output power with PA efficiency of 30%. The whole chip area is less than 4.32 mm2. It only consumes 12.63 mW in receiving mode and 14.22 mW in transmitting mode, respectively.

Key words: low powernoise cancellationquadrature mixertransceivervariable gain complex filter



[1]
IEEE Std 802. 15. 4-2003, IEEE Standard Part 15. 4: Wireless Medium access Control (MAC) and Physical Layer (PHY) specification for Wireless Personal Area Networks (WPANs)
[2]
Nguyen T K, Krizhanovskii V, Lee J, et al. A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. IEEE Trans Microw Theory Tech, 2006, 54(12):4062 doi: 10.1109/TMTT.2006.885556
[3]
Eo Y S, Yu H J, Song S S, et al. A fully integrated 2.4 GHz low IF CMOS transceiver for 802.15.4 ZigBee applications. IEEE ASSCC Dig Tech Papers, 2007:164 http://ieeexplore.ieee.org/document/4425756/
[4]
Retz1 G, Shanan H, Mulvaney K, et al. A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18μm CMOS for IEEE 802.15.4 WPAN. IEEE ISSCC Dig Tech Papers, 2009:414
[5]
Tedeschi M, Liscidini A, Castello R. Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J Solid-State Circuits, 2010, 45:1710 doi: 10.1109/JSSC.2010.2053861
[6]
Raja M K, Chen X, Yan D L, et al. A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS. Proc IEEE Asian Solid-State Circuits Conf Tech Dig, 2010
[7]
Yu R, Yeo T T. A 5.5 mA 2.4-GHz two-point modulation ZigBee transmitter with modulation gain calibration. Proc IEEE CICC, 2009:121
[8]
Peng K C, Huang C H, Li C J, et al. High-performance frequency-hopping transmitters using two-point delta-sigma modulation. IEEE Trans Microw Theory Tech, 2004, 52(11):2529 doi: 10.1109/TMTT.2004.837156
[9]
Kwon Y I, Park S G, Park T J, et al. An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications. IEEE Trans Circuits Syst Ⅰ, 2012, 59(2):324 doi: 10.1109/TCSI.2011.2162463
[10]
Razavi B. Design considerations for direct conversion receivers. IEEE Trans Circuits Syst Ⅱ:Analog Digit Signal Process, 1997, 44(6):428 doi: 10.1109/82.592569
[11]
Lou Wenfeng, Feng Peng, Wang Haiyong, et al. A low power fast-settling frequency-presetting PLL frequency synthesizer. Journal of Semiconductors, 2012, 33(4):045004 doi: 10.1088/1674-4926/33/4/045004
[12]
Feng P, Li Y, Wu N J. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags. IEEE Custom Integrated Circuit Conference, 2009:713 http://ieeexplore.ieee.org/document/5280734/
[13]
Bruccoleri F, Klumperink E A M, Nauta B. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J Solid-State Circuits, 2004, 39:275 doi: 10.1109/JSSC.2003.821786
[14]
Belostotski L, Haslett J W. Noise figure optimization of induc-tively degenerated CMOS LNAs with integrated gate inductors. IEEE Trans Circuits Syst, 2006, 53(3):1409
[15]
Guthrie B, Hughes J, Sayers T, et al. A CMOS gyrator low-IF filter for a dual-mode Bluetooth/ZigBee transceiver. IEEE J Solid-State Circuits, 2005, 40(9):1872 doi: 10.1109/JSSC.2005.848146
[16]
Nauta B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J Solid-State Circuits, 1992, 27:142 doi: 10.1109/4.127337
[17]
Sowlati T, Leenaerts D M W. A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier. IEEE Journal of Solid-State Circuits, 2003, 38(8):1318 doi: 10.1109/JSSC.2003.814417
[18]
Balankutty A, Yu S A, Feng Y, et al. A 0.6-V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications. IEEE J Solid-State Circuits, 2010, 45(3):538 doi: 10.1109/JSSC.2009.2039827
Fig. 1.  System architecture of the proposed transceiver.

Fig. 2.  The receiver front-end circuit.

Fig. 3.  Simplified small-signal model of the proposed LNA.

Fig. 4.  Schematic of the VFCG.

Fig. 5.  Variable gain pre-amplifier.

Fig. 6.  (a) Nauta's transconductor. (b) Class-AB transconductor.

Fig. 7.  Schematic of the PLL-based tuning circuit.

Fig. 8.  (a) Frequency response without tuning. (b) Frequency response with tuning.

Fig. 9.  Block diagram of the decibel linear PGA.

Fig. 10.  Schematic of the up-conversion mixer of the I path.

Fig. 11.  Schematic of the power amplifier.

Fig. 12.  The chip micrograph.

Fig. 13.  Measured NF of the receiver.

Fig. 14.  Measured frequency response of the receiver.

Fig. 15.  Measured receiver chain gain with the digital control word.

Fig. 16.  Measured output power and PA efficiency.

Fig. 17.  (a) Measured constellation for EVM and (b) transmitter output spectrum.

Table 1.   Measurement results.

Table 2.   Transceiver performance comparison.

[1]
IEEE Std 802. 15. 4-2003, IEEE Standard Part 15. 4: Wireless Medium access Control (MAC) and Physical Layer (PHY) specification for Wireless Personal Area Networks (WPANs)
[2]
Nguyen T K, Krizhanovskii V, Lee J, et al. A low-power RF direct-conversion receiver/transmitter for 2.4-GHz-band IEEE 802.15.4 standard in 0.18-μm CMOS technology. IEEE Trans Microw Theory Tech, 2006, 54(12):4062 doi: 10.1109/TMTT.2006.885556
[3]
Eo Y S, Yu H J, Song S S, et al. A fully integrated 2.4 GHz low IF CMOS transceiver for 802.15.4 ZigBee applications. IEEE ASSCC Dig Tech Papers, 2007:164 http://ieeexplore.ieee.org/document/4425756/
[4]
Retz1 G, Shanan H, Mulvaney K, et al. A highly integrated low-power 2.4 GHz transceiver using a direct-conversion diversity receiver in 0.18μm CMOS for IEEE 802.15.4 WPAN. IEEE ISSCC Dig Tech Papers, 2009:414
[5]
Tedeschi M, Liscidini A, Castello R. Low-power quadrature receivers for ZigBee (IEEE 802.15.4) applications. IEEE J Solid-State Circuits, 2010, 45:1710 doi: 10.1109/JSSC.2010.2053861
[6]
Raja M K, Chen X, Yan D L, et al. A 18 mW Tx, 22 mW Rx transceiver for 2.45 GHz IEEE 802.15.4 WPAN in 0.18-μm CMOS. Proc IEEE Asian Solid-State Circuits Conf Tech Dig, 2010
[7]
Yu R, Yeo T T. A 5.5 mA 2.4-GHz two-point modulation ZigBee transmitter with modulation gain calibration. Proc IEEE CICC, 2009:121
[8]
Peng K C, Huang C H, Li C J, et al. High-performance frequency-hopping transmitters using two-point delta-sigma modulation. IEEE Trans Microw Theory Tech, 2004, 52(11):2529 doi: 10.1109/TMTT.2004.837156
[9]
Kwon Y I, Park S G, Park T J, et al. An ultra low-power CMOS transceiver using various low-power techniques for LR-WPAN applications. IEEE Trans Circuits Syst Ⅰ, 2012, 59(2):324 doi: 10.1109/TCSI.2011.2162463
[10]
Razavi B. Design considerations for direct conversion receivers. IEEE Trans Circuits Syst Ⅱ:Analog Digit Signal Process, 1997, 44(6):428 doi: 10.1109/82.592569
[11]
Lou Wenfeng, Feng Peng, Wang Haiyong, et al. A low power fast-settling frequency-presetting PLL frequency synthesizer. Journal of Semiconductors, 2012, 33(4):045004 doi: 10.1088/1674-4926/33/4/045004
[12]
Feng P, Li Y, Wu N J. An ultra low power non-volatile memory in standard CMOS process for passive RFID tags. IEEE Custom Integrated Circuit Conference, 2009:713 http://ieeexplore.ieee.org/document/5280734/
[13]
Bruccoleri F, Klumperink E A M, Nauta B. Wide-band CMOS low-noise amplifier exploiting thermal noise canceling. IEEE J Solid-State Circuits, 2004, 39:275 doi: 10.1109/JSSC.2003.821786
[14]
Belostotski L, Haslett J W. Noise figure optimization of induc-tively degenerated CMOS LNAs with integrated gate inductors. IEEE Trans Circuits Syst, 2006, 53(3):1409
[15]
Guthrie B, Hughes J, Sayers T, et al. A CMOS gyrator low-IF filter for a dual-mode Bluetooth/ZigBee transceiver. IEEE J Solid-State Circuits, 2005, 40(9):1872 doi: 10.1109/JSSC.2005.848146
[16]
Nauta B. A CMOS transconductance-C filter technique for very high frequencies. IEEE J Solid-State Circuits, 1992, 27:142 doi: 10.1109/4.127337
[17]
Sowlati T, Leenaerts D M W. A 2.4-GHz 0.18-μm CMOS self-biased cascode power amplifier. IEEE Journal of Solid-State Circuits, 2003, 38(8):1318 doi: 10.1109/JSSC.2003.814417
[18]
Balankutty A, Yu S A, Feng Y, et al. A 0.6-V zero-IF/low-IF receiver with integrated fractional-N synthesizer for 2.4-GHz ISM-band applications. IEEE J Solid-State Circuits, 2010, 45(3):538 doi: 10.1109/JSSC.2009.2039827
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2740 Times PDF downloads: 22 Times Cited by: 0 Times

    History

    Received: 21 January 2013 Revised: 01 February 2013 Online: Published: 01 August 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Weiyang Liu, Jingjing Chen, Haiyong Wang, Nanjian Wu. A low power 2.4 GHz transceiver for ZigBee applications[J]. Journal of Semiconductors, 2013, 34(8): 085007. doi: 10.1088/1674-4926/34/8/085007 W Y Liu, J J Chen, H Y Wang, N J Wu. A low power 2.4 GHz transceiver for ZigBee applications[J]. J. Semicond., 2013, 34(8): 085007. doi: 10.1088/1674-4926/34/8/085007.Export: BibTex EndNote
      Citation:
      Weiyang Liu, Jingjing Chen, Haiyong Wang, Nanjian Wu. A low power 2.4 GHz transceiver for ZigBee applications[J]. Journal of Semiconductors, 2013, 34(8): 085007. doi: 10.1088/1674-4926/34/8/085007

      W Y Liu, J J Chen, H Y Wang, N J Wu. A low power 2.4 GHz transceiver for ZigBee applications[J]. J. Semicond., 2013, 34(8): 085007. doi: 10.1088/1674-4926/34/8/085007.
      Export: BibTex EndNote

      A low power 2.4 GHz transceiver for ZigBee applications

      doi: 10.1088/1674-4926/34/8/085007
      Funds:

      the National Natural Science Foundation of China 60976023

      the Technology Major Project 2012ZX03004007-002

      Project supported by the Technology Major Project (No. 2012ZX03004007-002), the National Natural Science Foundation of China (No. 60976023), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (No. 2012BAH20B02)

      the National Key Technology Research and Development Program of the Ministry of Science and Technology of China 2012BAH20B02

      More Information
      • Corresponding author: Wu Nanjian, Email:nanjian@semi.ac.cn
      • Received Date: 2013-01-21
      • Revised Date: 2013-02-01
      • Published Date: 2013-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return