SEMICONDUCTOR DEVICES

Eliminating the floating-body effects in a novel CMOS-compatible thin-SOI LDMOS

Yongheng Jiang, Xiaorong Luo, Yanfei Li, Pei Wang, Ye Fan, Kun Zhou, Qi Wang, Xiarong Hu and Bo Zhang

+ Author Affiliations

 Corresponding author: Luo Xiaorong, Email:xrluo@uestc.edu.cn

PDF

Abstract: A novel CMOS-compatible thin film SOI LDMOS with a novel body contact structure is proposed. It has a Si window and a P-body extended to the substrate through the Si window, thus, the P-body touches the P+ region to form the body contact. Compared with the conventional floating body SOI LDMOS (FB SOI LDMOS) structure, the new structure increases the off-state BV by 54%, decreases the specific on resistance by 20%, improves the output characteristics significantly, and suppresses the self-heating effect. Furthermore, the advantages of the low leakage current and low output capacitance of SOI devices do not degrade.

Key words: thin film SOI LDMOSbody contactfloating body effectparasitic BJT effect



[1]
Colinge J P. Silicon-on-insulator technology:materials to VLSI, 2nd ed. Netherlands:Kluwer Academic Publisher, 1997:123
[2]
Xue S B, Huang R, Huang D T, et al. Impact of the displacement damage in channel and source/drain regions on the DC characteristics degradation in deep-submicron MOSFETs after heavy ion irradiation. Chin Phys B, 2010, 19(11):117307 doi: 10.1088/1674-1056/19/11/117307
[3]
Choi J Y, Fossum J G. Analysis and control of floating-body bipolar effects in fully depleted submicrometer SOI MOSFET's. IEEE Trans Electron Devices, 1991, 38(6):1384 doi: 10.1109/16.81630
[4]
Eric P Ver P, Cuong T N, Simon W S, et al. Parasitic bipolar gain in fully depleted n-channel SOI MOSFET's. IEEE Trans Electron Devices, 1994, 41(6):970 doi: 10.1109/16.293310
[5]
Chen C E D, Mishel M, Sundaresan R, et al. Single-transistor latch in SOI MOSFET's. IEEE Electron Device Lett, 1988, 9(12):636 doi: 10.1109/55.20420
[6]
Liu Y L, Liu X Y, Han Z S, et al. Simulation of a novel Schottky body-contacted structure suppressing floating body effect in partially-depleted SOI nMOSFET's. Chinese Journal of Semiconductors, 2002, 23(10):1019
[7]
Cheng X H, Yang W W, Song Z R, et al. A novel LDMOS structure in thin film patterned-SOI technology with a silicon window beneath p well. Chinese Journal of Semiconductors, 2004, 25(12):1581
[8]
Sleight J, Mistry K. A compact Schottky body contact technology for SOI transistors. International Electron Devices Meeting, Washington, DC, USA, 1997:419
[9]
Min B W, Wu L K D, Caffo D, et al. Reduction of hysterestic propagation delay with less performance degradation by novel body contact in PD SOI application. IEEE International SOI Conference, Williamsburg, USA, 2002:169
[10]
Zhou J H, Gao M H, Pang S K, et al. Body-contact self-bias effect in partially depleted SOI-CMOS and alternatives to suppress floating body effect. Journal of Semiconductors, 2011, 32(2):024003 doi: 10.1088/1674-4926/32/2/024003
[11]
Liu Y L, Liu X Y, Han Z S, et al. Floating body effect in partially depleted SOI nMOSFET with asymmetric structure and Ge-implantation. Chinese Journal of Semiconductors, 2002, 23(11):1154
[12]
Cai X W, Hai C H. Study of body contact of partial depleted SOI NMOS devices. 8th International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 2006:212
[13]
Hai C H, Han Z S, Zhao L X, et al. Study of improved performance of SOI devices and circuits. Chinese Journal of Semiconductors, 2006, 27:322
[14]
Daghighi A, Osman M A. Three-dimensional simulation of body contact structures in PD SOI MOSFETs. Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium, Boise, USA, 2003:288
[15]
Merchant S, Arnold E, Baumgart S, et al. Realization of high breakdown voltage (> 700 V) in thin SOI devices. Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, USA, 1991:31
[16]
Baliga B J. Power semiconductor devices. Boston:MA PWS, 1996:155
[17]
Bi J S, Song L M, Hai C H, et al. Back-gate effect of SOI LDMOSFETs. Journal of Semiconductors, 2008, 29(11):2148 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08032508&flag=1
Fig. 1.  Schematic cross sections of (a) the proposed SOI LDMOS in a PIC and (b) the FB SOI LDMOS, with various current components marked

Fig. 2.  Equipotential contours (10 V/contour) of (a) proposed LDMOS at $C_{\rm G}$ = 2.2 × 10$^{20}$ cm$^{-4}$ (BV = 210 V), and the FB LDMOS at (b) $C_{\rm G}$ = 2.2 × 10$^{20}$ cm$^{-4}$ (BV = 41.8 V) and (c) $C_{\rm G}$ = 1.4 × 10$^{20}$ cm$^{-4}$ (BV = 136.3 V)

Fig. 3.  (a) Influences of $C_{\rm G}$ on the $I_{\rm LDS}$-$V_{\rm DS}$ characteristics in the off-state. (b) Lateral electric field distributions of the FB SOI LDMOS ($V_{\rm DS}$ = BV = 41.8 V at $C_{\rm G}$ = 2.2 × 10$^{20}$ cm$^{-4})$

Fig. 4.  (a) $I_{\rm DS}$-$V_{\rm DS}$ characteristics with $V_{\rm GS}$ -$V_{\rm TH}$ = 1 V, 3 V, and 5 V. (b) $I_{\rm DS}$-$V_{\rm DS}$ and $I_{\rm HOLE}$-$V_{\rm DS}$ characteristics of FB SOI LDMOS at $V_{\rm GS}$ -$V_{\rm TH}$ = 3 V (The inset indicates the $I_{\rm DS}$-$V_{\rm DS}$ characteristics in low $V_{\rm DS})$. (c) Parameters extracted from (b). (At $C_{\rm G}$ = 2.2 × 10$^{20}$ cm$^{-4})$

Fig. 5.  Influences of $W_{\rm S}$ on (a) BV (on-state $V_{\rm GS}$ -$V_{\rm TH}$ = 3 V) (b) $V_{\rm th}$ and $T_{\rm max}$. ($C_{\rm G}$ = 2.2 × 10$^{20}$ cm$^{-4}$, $N_{\rm ch}$ = 1.7 × 10$^{17}$ cm$^{-3})$

Fig. 6.  Dependences of BV and $R_{\rm on, \, sp}$ on $C_{\rm G}$

Fig. 7.  Influences of $N_{\rm ch}$ on $V_{\rm th}$ and BV ($C_{\rm G}$ = 2.2 × 10$^{20}$ cm$^{-4}$ for proposed SOI, $C_{\rm G}$ = 1.4 × 10$^{20}$ cm$^{-4}$ for FB SOI)

[1]
Colinge J P. Silicon-on-insulator technology:materials to VLSI, 2nd ed. Netherlands:Kluwer Academic Publisher, 1997:123
[2]
Xue S B, Huang R, Huang D T, et al. Impact of the displacement damage in channel and source/drain regions on the DC characteristics degradation in deep-submicron MOSFETs after heavy ion irradiation. Chin Phys B, 2010, 19(11):117307 doi: 10.1088/1674-1056/19/11/117307
[3]
Choi J Y, Fossum J G. Analysis and control of floating-body bipolar effects in fully depleted submicrometer SOI MOSFET's. IEEE Trans Electron Devices, 1991, 38(6):1384 doi: 10.1109/16.81630
[4]
Eric P Ver P, Cuong T N, Simon W S, et al. Parasitic bipolar gain in fully depleted n-channel SOI MOSFET's. IEEE Trans Electron Devices, 1994, 41(6):970 doi: 10.1109/16.293310
[5]
Chen C E D, Mishel M, Sundaresan R, et al. Single-transistor latch in SOI MOSFET's. IEEE Electron Device Lett, 1988, 9(12):636 doi: 10.1109/55.20420
[6]
Liu Y L, Liu X Y, Han Z S, et al. Simulation of a novel Schottky body-contacted structure suppressing floating body effect in partially-depleted SOI nMOSFET's. Chinese Journal of Semiconductors, 2002, 23(10):1019
[7]
Cheng X H, Yang W W, Song Z R, et al. A novel LDMOS structure in thin film patterned-SOI technology with a silicon window beneath p well. Chinese Journal of Semiconductors, 2004, 25(12):1581
[8]
Sleight J, Mistry K. A compact Schottky body contact technology for SOI transistors. International Electron Devices Meeting, Washington, DC, USA, 1997:419
[9]
Min B W, Wu L K D, Caffo D, et al. Reduction of hysterestic propagation delay with less performance degradation by novel body contact in PD SOI application. IEEE International SOI Conference, Williamsburg, USA, 2002:169
[10]
Zhou J H, Gao M H, Pang S K, et al. Body-contact self-bias effect in partially depleted SOI-CMOS and alternatives to suppress floating body effect. Journal of Semiconductors, 2011, 32(2):024003 doi: 10.1088/1674-4926/32/2/024003
[11]
Liu Y L, Liu X Y, Han Z S, et al. Floating body effect in partially depleted SOI nMOSFET with asymmetric structure and Ge-implantation. Chinese Journal of Semiconductors, 2002, 23(11):1154
[12]
Cai X W, Hai C H. Study of body contact of partial depleted SOI NMOS devices. 8th International Conference on Solid-State and Integrated Circuit Technology, Shanghai, China, 2006:212
[13]
Hai C H, Han Z S, Zhao L X, et al. Study of improved performance of SOI devices and circuits. Chinese Journal of Semiconductors, 2006, 27:322
[14]
Daghighi A, Osman M A. Three-dimensional simulation of body contact structures in PD SOI MOSFETs. Proceedings of the 15th Biennial University/Government/Industry Microelectronics Symposium, Boise, USA, 2003:288
[15]
Merchant S, Arnold E, Baumgart S, et al. Realization of high breakdown voltage (> 700 V) in thin SOI devices. Proceedings of the 3rd International Symposium on Power Semiconductor Devices and ICs, Baltimore, USA, 1991:31
[16]
Baliga B J. Power semiconductor devices. Boston:MA PWS, 1996:155
[17]
Bi J S, Song L M, Hai C H, et al. Back-gate effect of SOI LDMOSFETs. Journal of Semiconductors, 2008, 29(11):2148 http://www.jos.ac.cn/bdtxben/ch/reader/view_abstract.aspx?file_no=08032508&flag=1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2822 Times PDF downloads: 15 Times Cited by: 0 Times

    History

    Received: 22 January 2013 Revised: 15 April 2013 Online: Published: 01 September 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yongheng Jiang, Xiaorong Luo, Yanfei Li, Pei Wang, Ye Fan, Kun Zhou, Qi Wang, Xiarong Hu, Bo Zhang. Eliminating the floating-body effects in a novel CMOS-compatible thin-SOI LDMOS[J]. Journal of Semiconductors, 2013, 34(9): 094005. doi: 10.1088/1674-4926/34/9/094005 Y H Jiang, X R Luo, Y F Li, P Wang, Y Fan, K Zhou, Q Wang, X R Hu, B Zhang. Eliminating the floating-body effects in a novel CMOS-compatible thin-SOI LDMOS[J]. J. Semicond., 2013, 34(9): 094005. doi: 10.1088/1674-4926/34/9/094005.Export: BibTex EndNote
      Citation:
      Yongheng Jiang, Xiaorong Luo, Yanfei Li, Pei Wang, Ye Fan, Kun Zhou, Qi Wang, Xiarong Hu, Bo Zhang. Eliminating the floating-body effects in a novel CMOS-compatible thin-SOI LDMOS[J]. Journal of Semiconductors, 2013, 34(9): 094005. doi: 10.1088/1674-4926/34/9/094005

      Y H Jiang, X R Luo, Y F Li, P Wang, Y Fan, K Zhou, Q Wang, X R Hu, B Zhang. Eliminating the floating-body effects in a novel CMOS-compatible thin-SOI LDMOS[J]. J. Semicond., 2013, 34(9): 094005. doi: 10.1088/1674-4926/34/9/094005.
      Export: BibTex EndNote

      Eliminating the floating-body effects in a novel CMOS-compatible thin-SOI LDMOS

      doi: 10.1088/1674-4926/34/9/094005
      Funds:

      the National Natural Science Foundation of China 61176069

      Project supported by the National Natural Science Foundation of China (Nos. 61176069, 60976060, 51308020304)

      the National Natural Science Foundation of China 51308020304

      the National Natural Science Foundation of China 60976060

      More Information
      • Corresponding author: Luo Xiaorong, Email:xrluo@uestc.edu.cn
      • Received Date: 2013-01-22
      • Revised Date: 2013-04-15
      • Published Date: 2013-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return