SEMICONDUCTOR INTEGRATED CIRCUITS

An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement

Hongming Chen1, 2, , Yueguo Hao1, 2, Long Zhao1, 2 and Yuhua Cheng1, 2

+ Author Affiliations

 Corresponding author: Chen Hongming, Email:chenhongming@shrime-pku.org.cn

PDF

Abstract: An area-efficient CMOS 1-MS/s 10-bit charge-redistribution SAR ADC for battery voltage measurement in a SoC chip is proposed. A new DAC architecture presents the benefits of a low power approach without applying the common mode voltage. The threshold inverter quantizer (TIQ)-based CMOS Inverter is used as a comparator in the ADC to avoid static power consumption which is attractive in battery-supply application. Sixteen level-up shifters aim at converting the ultra low core voltage control signals to the higher voltage level analog circuit in a 55 nm CMOS process. The whole ADC power consumption is 2.5 mW with a maximum input capacitance of 12 pF in the sampling mode. The active area of the proposed ADC is 0.0462 mm2 and it achieves the SFDR and ENOB of 65.6917 dB and 9.8726 bits respectively with an input frequency of 200 kHz at 1 MS/s sampling rate.

Key words: successive approximation registeranalog-to-digital convertercharge redistributionthreshold inverter quantizer



[1]
Kamalinejad P, Mirabbasi S, Leung V C M. An ultra-low-power SAR ADC with an area-efficient DAC architecture. IEEE International Symposium on Circuits and Systems (ISCAS), 2011:13 http://ieeexplore.ieee.org/document/5937489/?arnumber=5937489
[2]
Guo W, Mirabbasi S. A low-power 10-bit 50-MS/s SAR ADC using a parasitic-compensated split-capacitor DAC. IEEE International Symposium on Circuits and Systems (ISCAS), 2012:1275 http://ieeexplore.ieee.org/document/6271470/keywords
[3]
Kuo C H, Hsieh C E. A high energy-efficiency SAR ADC based on partial floating capacitor switching technique. ESSCIRC, 2011 http://ieeexplore.ieee.org/document/6045010/
[4]
Van Elzakker M, van Tuijl E, Geraedts P, et al. A 10-bit charge-redistribution ADC consuming 1.9μ W at 1 MS/s. IEEE J Solid-State Circuits, 2010, 45(5):1007 doi: 10.1109/JSSC.2010.2043893
[5]
Zhong L, Yang H, Zhang C. Design of an embedded CMOS CR SAR ADC for low power applications in bio-sensor SOC. ASICON, 2007:668 http://ieeexplore.ieee.org/document/4415719/?reload=true&arnumber=4415719&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:4415536)%26pageNumber%3D2%26rowsPerPage%3D100
[6]
Ginsburg B P, Chandrakasan A P. Highly interleaved 5-bit, 250-MSample/s, 1.2-mW ADC with redundant channels in 65-nm CMOS. IEEE J Solid-State Circuits, 2008, 43(12):2641 doi: 10.1109/JSSC.2008.2006334
[7]
McCreary J L, Gray P R. LL-MOS charge redistribution analog-to-digital conversion techniques. Part I. IEEE J Solid-State Circuits, 1975, 10(6):371 doi: 10.1109/JSSC.1975.1050629
[8]
Agnes A, Bonizzoni E, Maloberti F. Design of an ultra-low power SA-ADC with medium/high resolution and speed. IEEE International Symposium on Circuits and Systems (ISCAS), 2008
[9]
Chen Y, Zhu X, Tamura H, et al. Split capacitor DAC mismatch calibration in successive approximation ADC. IEEE Custom Integrated Circuits Conference, 2009:279
[10]
Zhu Y, Chan C H, Chio U F, et al. A voltage feedback charge compensation technique for split DAC architecture in SAR ADC. IEEE International Symposium on Circuits and Systems (ISCAS), 2010:4061
[11]
Tangel A, Choi K. The CMOS inverter as a comparator in ADC design. Analog Integrated Circuits and Signal Processing, 2003:147
[12]
Tangel A. VLSI implementation of the threshold inverter quantization (TIQ) technique for CMOS flash A/D converter applications. PhD Dissertation, The Pennsylvania State University, 1999:243
[13]
Segura J, Rossello J L, Morra J, et al. A variable threshold voltage inverter for CMOS programmable logic circuits. IEEE J Solid-State Circuits, 1998, 33(8):1262 doi: 10.1109/4.705367
[14]
Koo K H, Seo J H, Ko M L, et al. A new level-up shifter for high speed and wide range interface in ultra deep sub-micron. IEEE International Symposium on Circuits and Systems (ISCAS), 2005:1063
[15]
Tong Xingyuan, Chen Jianming, Zhu Zhangming, et al. A high performance 90 nm CMOS SAR ADC with hybrid architecture. Journal of Semiconductors, 2010, 31(1):015002 doi: 10.1088/1674-4926/31/1/015002
[16]
Zeng Z, Dong C S, Tan X. A 10-bit 1 MS/s low power SAR ADC for RSSI application. IEEE ICSICT, 2010:569
[17]
Abdelhalim K, MacEachern L, Mahmoud S. A nanowatt successive approximation ADC with offset correction for implantable sensor applications. IEEE International Symposium on Circuits and Systems (ISCAS), 2007:2351
[18]
Yang Siyu, Zhang Hui, Fu Wenhui, et al. A low power 12-bit 200-kS/s SAR ADC with a differential time domain comparator. Journal of Semiconductors, 2011, 32(3):035002 doi: 10.1088/1674-4926/32/3/035002
[19]
Wu H, Li B, Zou M, et al. An 1.2V 8-bit 1-MS/s single-input res-cap segment SAR ADC for temperature sensor in LTE. International Conference of Electron Devices and Solid-State Circuits (EDSSC), 2011
[20]
Trakimas M, Hancock T, Sonkusale S. A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE International Symposium on Circuits and Systems (ISCAS), 2012:3162
Fig. 1.  Functional block diagram of the proposed charge redistribution SAR ADC

Fig. 2.  A split-capacitor DAC structure with a fractional value bridge capacitor

Fig. 3.  Schematic of the proposed charge redistribution DAC

Fig. 4.  (a) TIQ schematic. (b) Voltage transfer curve

Fig. 5.  Schematic of the level-up shifter

Fig. 6.  Partial layout of SoC test chip including the proposed SAR ADC

Fig. 7.  The die layout of the proposed ADC with circuit location noted

Fig. 8.  Test system setup of computer-aided ADC characterization

Fig. 9.  Analog input equivalent circuit of the proposed ADC

Fig. 10.  Measured DNL/INL plots of ADC at 1 MS/s

Fig. 11.  Measured 8192-point FFT plot of ADC output at 1 MS/s

Fig. 12.  Output spectrum for input sine wave at 200 kHz

Fig. 13.  Measured SNR, SNDR and SFDR versus input frequency at 1 MS/s

Table 1.   ADC performance summary

Table 2.   Performance comparison with previous works

[1]
Kamalinejad P, Mirabbasi S, Leung V C M. An ultra-low-power SAR ADC with an area-efficient DAC architecture. IEEE International Symposium on Circuits and Systems (ISCAS), 2011:13 http://ieeexplore.ieee.org/document/5937489/?arnumber=5937489
[2]
Guo W, Mirabbasi S. A low-power 10-bit 50-MS/s SAR ADC using a parasitic-compensated split-capacitor DAC. IEEE International Symposium on Circuits and Systems (ISCAS), 2012:1275 http://ieeexplore.ieee.org/document/6271470/keywords
[3]
Kuo C H, Hsieh C E. A high energy-efficiency SAR ADC based on partial floating capacitor switching technique. ESSCIRC, 2011 http://ieeexplore.ieee.org/document/6045010/
[4]
Van Elzakker M, van Tuijl E, Geraedts P, et al. A 10-bit charge-redistribution ADC consuming 1.9μ W at 1 MS/s. IEEE J Solid-State Circuits, 2010, 45(5):1007 doi: 10.1109/JSSC.2010.2043893
[5]
Zhong L, Yang H, Zhang C. Design of an embedded CMOS CR SAR ADC for low power applications in bio-sensor SOC. ASICON, 2007:668 http://ieeexplore.ieee.org/document/4415719/?reload=true&arnumber=4415719&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:4415536)%26pageNumber%3D2%26rowsPerPage%3D100
[6]
Ginsburg B P, Chandrakasan A P. Highly interleaved 5-bit, 250-MSample/s, 1.2-mW ADC with redundant channels in 65-nm CMOS. IEEE J Solid-State Circuits, 2008, 43(12):2641 doi: 10.1109/JSSC.2008.2006334
[7]
McCreary J L, Gray P R. LL-MOS charge redistribution analog-to-digital conversion techniques. Part I. IEEE J Solid-State Circuits, 1975, 10(6):371 doi: 10.1109/JSSC.1975.1050629
[8]
Agnes A, Bonizzoni E, Maloberti F. Design of an ultra-low power SA-ADC with medium/high resolution and speed. IEEE International Symposium on Circuits and Systems (ISCAS), 2008
[9]
Chen Y, Zhu X, Tamura H, et al. Split capacitor DAC mismatch calibration in successive approximation ADC. IEEE Custom Integrated Circuits Conference, 2009:279
[10]
Zhu Y, Chan C H, Chio U F, et al. A voltage feedback charge compensation technique for split DAC architecture in SAR ADC. IEEE International Symposium on Circuits and Systems (ISCAS), 2010:4061
[11]
Tangel A, Choi K. The CMOS inverter as a comparator in ADC design. Analog Integrated Circuits and Signal Processing, 2003:147
[12]
Tangel A. VLSI implementation of the threshold inverter quantization (TIQ) technique for CMOS flash A/D converter applications. PhD Dissertation, The Pennsylvania State University, 1999:243
[13]
Segura J, Rossello J L, Morra J, et al. A variable threshold voltage inverter for CMOS programmable logic circuits. IEEE J Solid-State Circuits, 1998, 33(8):1262 doi: 10.1109/4.705367
[14]
Koo K H, Seo J H, Ko M L, et al. A new level-up shifter for high speed and wide range interface in ultra deep sub-micron. IEEE International Symposium on Circuits and Systems (ISCAS), 2005:1063
[15]
Tong Xingyuan, Chen Jianming, Zhu Zhangming, et al. A high performance 90 nm CMOS SAR ADC with hybrid architecture. Journal of Semiconductors, 2010, 31(1):015002 doi: 10.1088/1674-4926/31/1/015002
[16]
Zeng Z, Dong C S, Tan X. A 10-bit 1 MS/s low power SAR ADC for RSSI application. IEEE ICSICT, 2010:569
[17]
Abdelhalim K, MacEachern L, Mahmoud S. A nanowatt successive approximation ADC with offset correction for implantable sensor applications. IEEE International Symposium on Circuits and Systems (ISCAS), 2007:2351
[18]
Yang Siyu, Zhang Hui, Fu Wenhui, et al. A low power 12-bit 200-kS/s SAR ADC with a differential time domain comparator. Journal of Semiconductors, 2011, 32(3):035002 doi: 10.1088/1674-4926/32/3/035002
[19]
Wu H, Li B, Zou M, et al. An 1.2V 8-bit 1-MS/s single-input res-cap segment SAR ADC for temperature sensor in LTE. International Conference of Electron Devices and Solid-State Circuits (EDSSC), 2011
[20]
Trakimas M, Hancock T, Sonkusale S. A compressed sensing analog-to-information converter with edge-triggered SAR ADC core. IEEE International Symposium on Circuits and Systems (ISCAS), 2012:3162
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3348 Times PDF downloads: 34 Times Cited by: 0 Times

    History

    Received: 09 February 2013 Revised: 17 April 2013 Online: Published: 01 September 2013

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hongming Chen, Yueguo Hao, Long Zhao, Yuhua Cheng. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement[J]. Journal of Semiconductors, 2013, 34(9): 095013. doi: 10.1088/1674-4926/34/9/095013 H M Chen, Y G Hao, L Zhao, Y H Cheng. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement[J]. J. Semicond., 2013, 34(9): 095013. doi: 10.1088/1674-4926/34/9/095013.Export: BibTex EndNote
      Citation:
      Hongming Chen, Yueguo Hao, Long Zhao, Yuhua Cheng. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement[J]. Journal of Semiconductors, 2013, 34(9): 095013. doi: 10.1088/1674-4926/34/9/095013

      H M Chen, Y G Hao, L Zhao, Y H Cheng. An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement[J]. J. Semicond., 2013, 34(9): 095013. doi: 10.1088/1674-4926/34/9/095013.
      Export: BibTex EndNote

      An area-efficient 55 nm 10-bit 1-MS/s SAR ADC for battery voltage measurement

      doi: 10.1088/1674-4926/34/9/095013
      Funds:

      the National 02 Key Special Program of China 2009ZX02305-005

      the National Natural Science Foundation of China 60736030

      Project supported by the National Natural Science Foundation of China (No. 60736030), the Research Program of Science and Technology Commission of Shanghai (No. 11110707100), and the National 02 Key Special Program of China (No. 2009ZX02305-005)

      the Research Program of Science and Technology Commission of Shanghai 11110707100

      More Information
      • Corresponding author: Chen Hongming, Email:chenhongming@shrime-pku.org.cn
      • Received Date: 2013-02-09
      • Revised Date: 2013-04-17
      • Published Date: 2013-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return