SEMICONDUCTOR DEVICES

A novel optimization design for 3.3 kV injection-enhanced gate transistor

Xiaoli Tian1, Weili Chu1, Jiang Lu1, Shuojin Lu1, 2, Qiaoqun Yu1 and Yangjun Zhu1, 2,

+ Author Affiliations

 Corresponding author: Zhu Yangjun, Email:zhuyangjun@ime.ac.cn

PDF

Abstract: This paper introduces a homemade injection-enhanced gate transistor (IEGT) with blocking voltage up to 3.7 kV. An advanced cell structure with dummy trench and a large cell pitch is adopted in the IEGT. The carrier concentration at the N-emitter side is increased by the larger cell pitch of the IEGT and it enhances the P-i-N effect within the device. The result shows that the IEGT has a remarkablely low on-state forward voltage drop (VCE(sat)) compared to traditional trench IGBT structures. However, too large cell pitch decreases the channel density of the trench IEGT and increases the voltage drop across the channel, finally it will increase the VCE(sat) of the IEGT. Therefore, the cell pitch selection is the key parameter consideration in the design of the IEGT. In this paper, a cell pitch selection method and the optimal value of 3.3 kV IEGT are presented by simulations and experimental results.

Key words: IEGTdummy cell3.3kVcell pitch



[1]
Wu Yu, Lu Xiuhong, Kang Baowei, et al. A novel low power loss IGBT (LPL-IGBT) and its simulation. Chinese Journal of Semiconductors, 2001, 22(12):1565
[2]
Baliga J. The future of power semiconductor device technology. Proc IEEE, 2001, 89(6):822 doi: 10.1109/5.931471
[3]
Laska T, Pfirsch F, Hirler F, et al. 1200 V-trench-IGBT study with square short circuit SOA. Proc ISPSD, 1998:433
[4]
Omura I, Oguar T, Sugiyama K, et al. Carrier injection enhancement effect of high voltage MOS devices-device physics and design concept. Proc ISPSD, 1997: 217
[5]
Ogura T, Ninomuya H, Sugiyama K, et al. 4.5-kV injection-enhanced gate transistors (IEGTs) with high turn-off ruggedness. IEEE Trans Electron Devices, 2004, 51(4):636 doi: 10.1109/TED.2004.825111
[6]
Kitagawa M, Omura I, Hasegawa S, et al. A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor. Electron Devices Meeting, 1993
[7]
Baliga J. Modern power devices. New York: J Wiley & Sons, 1987
[8]
Baliga B J. Fundamentals of power semiconductor devices. Springer, 2008
[9]
Laska T, Miinzer M, Pfirsch F, et al. The field stop IGBT (FS IGBT)-a new power device concept with a great improvement potential. Proc ISPSD, 2000: 355
[10]
Lu Jiang, Wang Lixin, Lu Shuojin, et al. Avalanche behavior of power MOSFETs under different temperature conditions. Journal of Semiconductors, 2011, 32(1):014001 doi: 10.1088/1674-4926/32/1/014001
Fig. 1.  Models used to analyze forward conduction characteristics. (a) P–i–N rectifier/MOSFET model. (b) P–N–P transistor/MOSFET model.

Fig. 2.  Cross section of the IGBT.

Fig. 3.  Simulation results of the IEGT with different cell pitch. (a) Cell pitch $=$ 27 $\mu $m. (b) Cell pitch $=$ 41 $\mu $m.

Fig. 4.  SEM images of the fabricated IEGT with different cell pitch. (a) Cell pitch $=$ 27 $\mu $m. (b) Cell pitch $=$ 41 $\mu $m.

Fig. 5.  Simulation results of the forward blocking state of the traditional trench IGBT and IEGTs.

Fig. 6.  Experimental result of the forward blocking state of IEGTs with different cell pitch. (a) Cell pitch $=$ 27 $\mu$m. (b) Cell pitch $=$ 41 $\mu $m.

Fig. 7.  Simulated result of $V_{\rm CE(sat)}$ of 3.3 kV IEGTs with different cell pitch.} \end{minipage}\hskip5.5mm \begin{minipage}{\columnwidth} \vspace*{6mm} \centering \includegraphics{51501-8} \caption{Experimental $I_{\rm C}$$V_{\rm C}$ characteristics of 3.3 kV IEGTs with different cell pitch.

Fig. 8.  Experimental ICVC characteristics of 3.3 kV IEGTs with different cell pitch.

Fig. 9.  (color online) Experimental switching waveform of the IEGT with a cell pitch of 27 $\mu $m.

Fig. 10.  (color online) Experimental switching waveform of the IEGT with a cell pitch of 41 $\mu $m.

[1]
Wu Yu, Lu Xiuhong, Kang Baowei, et al. A novel low power loss IGBT (LPL-IGBT) and its simulation. Chinese Journal of Semiconductors, 2001, 22(12):1565
[2]
Baliga J. The future of power semiconductor device technology. Proc IEEE, 2001, 89(6):822 doi: 10.1109/5.931471
[3]
Laska T, Pfirsch F, Hirler F, et al. 1200 V-trench-IGBT study with square short circuit SOA. Proc ISPSD, 1998:433
[4]
Omura I, Oguar T, Sugiyama K, et al. Carrier injection enhancement effect of high voltage MOS devices-device physics and design concept. Proc ISPSD, 1997: 217
[5]
Ogura T, Ninomuya H, Sugiyama K, et al. 4.5-kV injection-enhanced gate transistors (IEGTs) with high turn-off ruggedness. IEEE Trans Electron Devices, 2004, 51(4):636 doi: 10.1109/TED.2004.825111
[6]
Kitagawa M, Omura I, Hasegawa S, et al. A 4500 V injection enhanced insulated gate bipolar transistor (IEGT) operating in a mode similar to a thyristor. Electron Devices Meeting, 1993
[7]
Baliga J. Modern power devices. New York: J Wiley & Sons, 1987
[8]
Baliga B J. Fundamentals of power semiconductor devices. Springer, 2008
[9]
Laska T, Miinzer M, Pfirsch F, et al. The field stop IGBT (FS IGBT)-a new power device concept with a great improvement potential. Proc ISPSD, 2000: 355
[10]
Lu Jiang, Wang Lixin, Lu Shuojin, et al. Avalanche behavior of power MOSFETs under different temperature conditions. Journal of Semiconductors, 2011, 32(1):014001 doi: 10.1088/1674-4926/32/1/014001
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2443 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 15 May 2013 Revised: 26 July 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaoli Tian, Weili Chu, Jiang Lu, Shuojin Lu, Qiaoqun Yu, Yangjun Zhu. A novel optimization design for 3.3 kV injection-enhanced gate transistor[J]. Journal of Semiconductors, 2014, 35(1): 014005. doi: 10.1088/1674-4926/35/1/014005 X L Tian, W L Chu, J Lu, S J Lu, Q Q Yu, Y J Zhu. A novel optimization design for 3.3 kV injection-enhanced gate transistor[J]. J. Semicond., 2014, 35(1): 014005. doi: 10.1088/1674-4926/35/1/014005.Export: BibTex EndNote
      Citation:
      Xiaoli Tian, Weili Chu, Jiang Lu, Shuojin Lu, Qiaoqun Yu, Yangjun Zhu. A novel optimization design for 3.3 kV injection-enhanced gate transistor[J]. Journal of Semiconductors, 2014, 35(1): 014005. doi: 10.1088/1674-4926/35/1/014005

      X L Tian, W L Chu, J Lu, S J Lu, Q Q Yu, Y J Zhu. A novel optimization design for 3.3 kV injection-enhanced gate transistor[J]. J. Semicond., 2014, 35(1): 014005. doi: 10.1088/1674-4926/35/1/014005.
      Export: BibTex EndNote

      A novel optimization design for 3.3 kV injection-enhanced gate transistor

      doi: 10.1088/1674-4926/35/1/014005
      Funds:

      the National Major Science and Technology Special Project of China 2011ZX02603-002

      the National Major Science and Technology Special Project of China 2011ZX02504-002

      Project supported by the National Major Science and Technology Special Project of China (Nos. 2011ZX02504-002, 2011ZX02603-002)

      More Information
      • Corresponding author: Zhu Yangjun, Email:zhuyangjun@ime.ac.cn
      • Received Date: 2013-05-15
      • Revised Date: 2013-07-26
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return