SEMICONDUCTOR DEVICES

A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer

Wei Wu, Bo Zhang, Jian Fang, Xiaorong Luo and Zhaoji Li

+ Author Affiliations

 Corresponding author: Wu Wei, Email:wuweiwwu@163.com

PDF

Abstract: A novel buffer super-junction (SJ) lateral double-diffused MOSFET (LDMOS) with an N-type buried layer (NB) is proposed. An N- buffer layer is implemented under the SJ region and an N-type layer is buried in the P substrate. Firstly, the new electric field peak introduced by the p-n junction of the P substrate and the N-type buried layer modulates the surface electric field distribution. Secondly, the N- buffer layer suppresses the substrate assisted depletion effect. Both of them improve the breakdown voltage (BV). Finally, because of the shallow depth of the SJ region, the NB buffer SJ-LDMOS is compatible with Bi-CMOS technology. Simulation results indicate that the average value of the surface lateral electric field strength of the NB buffer SJ-LDMOS reaches 23 V/μm at 15 μm drift length which results in a BV of 350 V and a specific on-resistance of 21 mΩ · cm2.

Key words: N-type buried layerbreakdown voltageelectric field modulationlateral double-diffusion MOSFETsuper-junction



[1]
Chen X B, Mawby P A, Salama T. Theory of a novel voltage-sustaining layer for power devices. J Microelectron, 1998, 29(12):1005 doi: 10.1016/S0026-2692(98)00065-2
[2]
Chen X B, Wang X, Sin J K O. A novel high-voltage sustaining structure with buried oppositely doped regions. IEEE Trans Electron Devices, 2000, 47(6):1280 doi: 10.1109/16.842974
[3]
Udrea F, Popescu A, Miline W I. A new class of lateral power devices for HVIC's based on the 3D RESURF concept. IEEE BTCM, 1998:187 http://ieeexplore.ieee.org/document/741921/?arnumber=741921
[4]
Udrea F, Popescu A, Miline W I. The 3D RESURF double-gate MOSFET:a revolutionary power device concept. Electron Lett, 1998, 34(8):808 doi: 10.1049/el:19980504
[5]
Wu W, Zhang B, Fang J, et al. High-voltage super-junction lateral double-diffused metal oxide semiconductor with a partial lightly doped pillar. Chin Phys B, 2013, 22(6):068501 doi: 10.1088/1674-1056/22/6/068501
[6]
Nassif-Khalil S G, Ander C, Salama T. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50(5):1385 doi: 10.1109/TED^2003.813460
[7]
Zhang B, Wang W, Chen W J, et al. High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett, 2009, 30(8):849 doi: 10.1109/LED^2009^2023541
[8]
Park I Y, Salama T. New superjunction LDMOST with n-buffer layer. IEEE Trans Electron Devices, 2006, 53(8):1909 doi: 10.1109/TED^2006.877007
[9]
Duan B X, Yang Y T, Zhang B. New superjunction LDMOS with N-type charges' compensation layer. IEEE Electron Device Lett, 2009, 30(3):305 doi: 10.1109/LED^2009^2012396
[10]
Onishi Y, Wang H, Xu E, et al. SJ-FINFET:a new low voltage lateral superjunction MOSFET. Proc IEEE ISPSD, 2008:111 http://ieeexplore.ieee.org/document/4538910/keywords
[11]
Rub M, Bar M, Deml G, et al. A 600 V 8.7Ω·mm2 lateral super-junction transistor Proc IEEE ISPSD, 2006:305
[12]
Chen W J, Zhang B, Li Z J. Optimization of super-junction SOI-LDMOS with a step doping surface-implanted layer. Semicond Sci Technol, 2007, 22(5):464 doi: 10.1088/0268-1242/22/5/002
[13]
Wang W L, Zhang B, Li Z J. Super junction LDMOS with enhanced dielectric layer electric field for high breakdown voltage. Journal of Semiconductors, 2011, 32(2):262 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=10080905&flag=1
[14]
Udrea F. State-of-the-art technologies and devices for high-voltage integrated circuits. IET Circuits Devices Syst, 2007, 1(5):357 doi: 10.1049/iet-cds:20070025
[15]
TCAD Sentaurus Manuals 2010 Version D-2010. 03
Fig. 1.  Three-dimensional (3D) view of the NB buffer SJ-LDMOS.

Fig. 3.  Process flows of manufacture of the buried SJ layer. (a) Formation of N-buried layer. (b) Epitaxial growth and ions implantation to form N-buffer layer. (c) Gate oxide growth. (d) Ion implantation to form the SJ region.

Fig. 4.  The 3D equipotential contours for (a) the NB buffer SJ-LDMOS (350 V), (b) the buffer SJ-LDMOS (280 V), and (c) the conventional SJ-LDMOS (130 V) (12 V/contour. NB buffer SJ-LDMOS: $L_{\rm b}$ $=$ 5 $\mu$m, $D_{\rm d}$ $=$ 7 $\times$ 10$^{11}$ cm$^{-2}$, $D_{\rm b}$ $=$ 2.7 $\times$ 10$^{12}$ cm$^{-2}$; buffer SJ-LDMOS: $D_{\rm d}$ $=$ 1.6 $\times$ 10$^{12}$ cm$^{-2}$, $t_{\rm SJ}$ $=$ 1 $\mu$m, $t_{\rm d}$ $=$ 3.5 $\mu $m).

Fig. 2.  Cross-section of the NB buffer SJ-LDMOS.

Fig. 5.  (a) Lateral electronic field distributions, (b) vertical electronic field distributions and the charge density around the drain ($x=$ 25 $\mu$m) for the NB buffer SJ-LDMOS (350 V), buffer SJ-LDMOS (280 V), and the conventional SJ-LDMOS (130 V) at breakdown (NB buffer SJ-LDMOS: $L_{\rm b}$ $=$ 5 $\mu$m, $D_{\rm d}$ $=$ 7 $\times$ 10$^{11}$ cm$^{-2}$, $D_{\rm b}$ $=$ 2.7 $\times$ 10$^{12}$ cm$^{-2}$; Buffer SJ-LDMOS: $D_{\rm d}$ $=$ 1.6 $\times$ 10$^{12}$ cm$^{-2}$, $t_{\rm SJ}$ $=$ 1 $\mu$m, $t_{\rm d}$ $=$ 4.5 $\mu$m).

Fig. 6.  (a) BV versus $L_{\rm b}$ and $D_{\rm t}$ ($D_{\rm N}=D_{\rm P}$ $=$ 2 $\times$ 10$^{12}$ cm$^{-2})$. (b) BV and $R_{\rm on, sp}$ versus $D_{\rm b}$ ($L_{\rm b}$ $=$ 5 $\mu$m, $D_{\rm t}$ $=$ 1.6 $\times$ 10$^{12}$ cm$^{-2}$, $D_{\rm N}=D_{\rm P}$ $=$ 2 $\times$ 10$^{12}$ cm$^{-2})$. (c) BV as a function of charge imbalance in the N pillars of the SJ region. ($D_{\rm P}$ $=$ 2 $\times$ 10$^{12}$ cm$^{-2}$, $L_{\rm b}$ $=$ 5 $\mu$m, $D_{\rm d}$ $=$ 7 $\times$ 10$^{11}$ cm$^{-2}$, $D_{\rm b}$ $=$ 2.7 $\times$ 10$^{12}$ cm$^{-2}$.)

Fig. 7.  Dependences of BV and $R_{\rm on, sp}$ on $L_{\rm D}$ for an NB buffer SJ-LDMOS, a buffer SJ-LDMOS, and a conventional SJ-LDMOS.

Table 1.   FOM versus $L_{\rm D}$.

[1]
Chen X B, Mawby P A, Salama T. Theory of a novel voltage-sustaining layer for power devices. J Microelectron, 1998, 29(12):1005 doi: 10.1016/S0026-2692(98)00065-2
[2]
Chen X B, Wang X, Sin J K O. A novel high-voltage sustaining structure with buried oppositely doped regions. IEEE Trans Electron Devices, 2000, 47(6):1280 doi: 10.1109/16.842974
[3]
Udrea F, Popescu A, Miline W I. A new class of lateral power devices for HVIC's based on the 3D RESURF concept. IEEE BTCM, 1998:187 http://ieeexplore.ieee.org/document/741921/?arnumber=741921
[4]
Udrea F, Popescu A, Miline W I. The 3D RESURF double-gate MOSFET:a revolutionary power device concept. Electron Lett, 1998, 34(8):808 doi: 10.1049/el:19980504
[5]
Wu W, Zhang B, Fang J, et al. High-voltage super-junction lateral double-diffused metal oxide semiconductor with a partial lightly doped pillar. Chin Phys B, 2013, 22(6):068501 doi: 10.1088/1674-1056/22/6/068501
[6]
Nassif-Khalil S G, Ander C, Salama T. Super-junction LDMOST on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50(5):1385 doi: 10.1109/TED^2003.813460
[7]
Zhang B, Wang W, Chen W J, et al. High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett, 2009, 30(8):849 doi: 10.1109/LED^2009^2023541
[8]
Park I Y, Salama T. New superjunction LDMOST with n-buffer layer. IEEE Trans Electron Devices, 2006, 53(8):1909 doi: 10.1109/TED^2006.877007
[9]
Duan B X, Yang Y T, Zhang B. New superjunction LDMOS with N-type charges' compensation layer. IEEE Electron Device Lett, 2009, 30(3):305 doi: 10.1109/LED^2009^2012396
[10]
Onishi Y, Wang H, Xu E, et al. SJ-FINFET:a new low voltage lateral superjunction MOSFET. Proc IEEE ISPSD, 2008:111 http://ieeexplore.ieee.org/document/4538910/keywords
[11]
Rub M, Bar M, Deml G, et al. A 600 V 8.7Ω·mm2 lateral super-junction transistor Proc IEEE ISPSD, 2006:305
[12]
Chen W J, Zhang B, Li Z J. Optimization of super-junction SOI-LDMOS with a step doping surface-implanted layer. Semicond Sci Technol, 2007, 22(5):464 doi: 10.1088/0268-1242/22/5/002
[13]
Wang W L, Zhang B, Li Z J. Super junction LDMOS with enhanced dielectric layer electric field for high breakdown voltage. Journal of Semiconductors, 2011, 32(2):262 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=10080905&flag=1
[14]
Udrea F. State-of-the-art technologies and devices for high-voltage integrated circuits. IET Circuits Devices Syst, 2007, 1(5):357 doi: 10.1049/iet-cds:20070025
[15]
TCAD Sentaurus Manuals 2010 Version D-2010. 03
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3341 Times PDF downloads: 23 Times Cited by: 0 Times

    History

    Received: 24 June 2013 Revised: 07 September 2013 Online: Published: 01 January 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Wei Wu, Bo Zhang, Jian Fang, Xiaorong Luo, Zhaoji Li. A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer[J]. Journal of Semiconductors, 2014, 35(1): 014009. doi: 10.1088/1674-4926/35/1/014009 W Wu, B Zhang, J Fang, X R Luo, Z J Li. A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer[J]. J. Semicond., 2014, 35(1): 014009. doi: 10.1088/1674-4926/35/1/014009.Export: BibTex EndNote
      Citation:
      Wei Wu, Bo Zhang, Jian Fang, Xiaorong Luo, Zhaoji Li. A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer[J]. Journal of Semiconductors, 2014, 35(1): 014009. doi: 10.1088/1674-4926/35/1/014009

      W Wu, B Zhang, J Fang, X R Luo, Z J Li. A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer[J]. J. Semicond., 2014, 35(1): 014009. doi: 10.1088/1674-4926/35/1/014009.
      Export: BibTex EndNote

      A high voltage Bi-CMOS compatible buffer super-junction LDMOS with an N-type buried layer

      doi: 10.1088/1674-4926/35/1/014009
      Funds:

      the National Defense Pre-Research of China 51308020304

      Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2010ZX02201), the National Natural Science Foundation of China (No. 61176069), and the National Defense Pre-Research of China (No. 51308020304)

      the National Science and Technology Major Project of the Ministry of Science and Technology of China 2010ZX02201

      the National Natural Science Foundation of China 61176069

      More Information
      • Corresponding author: Wu Wei, Email:wuweiwwu@163.com
      • Received Date: 2013-06-24
      • Revised Date: 2013-09-07
      • Published Date: 2014-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return