SEMICONDUCTOR DEVICES

A novel multiple super junction power device structure with low specific on-resistance

Hui Zhu1, Haiou Li1, , Qi Li1, 2, Yuanhao Huang1, Xiaoning Xu1 and Hailiang Zhao1

+ Author Affiliations

 Corresponding author: Li Haiou, Email:290557482@qq.com

PDF

Abstract: A novel multiple super junction (MSJ) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device:multiple layers of SJ are introduced oppositely under surface SJ; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D-depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom SJ, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm.

Key words: multiple super junction3D-depletedbreakdown voltagespecific on-resistanceelectric field shielding effect



[1]
Rub M, Bar M, Deml G, et al. A 600 V 8.7 Ohmmm2 lateral superjunction transistor. Proc ISPSD, 2006:1 http://ieeexplore.ieee.org/document/1666132/keywords
[2]
Nassif-Khalil S G, Salama C A T. Super-junction LDMOS on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50(5):1385 doi: 10.1109/TED.2003.813460
[3]
Park I Y, Salama C A T. New super-junction LDMOS with N-buffer layer. IEEE Trans Electron Devices, 2006, 53(8):1909 doi: 10.1109/TED.2006.877007
[4]
Chen W J, Zhang B, Li Z J. Realizing high breakdown voltage SJ-LDMOS on bulk silicon using a partial n-buried layer. Chinese Journal of Semiconductors, 2007, 28(3):355 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTX200703008.htm
[5]
Wu W, Zhang B, Fang J, et al. High-voltage super-junction lateral double-diffused metal oxide semiconductor with a partial lightly doped pillar. Chin Phys B, 2013, 22(6):637.
[6]
Zhang B, Wang W L, Chen W J, et al. High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett, 200930(8):849 doi: 10.1109/LED.2009.2023541
[7]
Kanechika M, Kodama M, Uesugi T, et al. A concept of SOI RESURF lateral devices with striped trench electrodes. IEEE Trans Electron Devices, 2005, 52(6):1205 doi: 10.1109/TED.2005.848093
[8]
Onishi Y, Wang H, Xu H P E, et al. SJ-FINFET:a new low voltage lateral superjunction MOSFET. Proc ISPSD, 2008:111 http://ieeexplore.ieee.org/document/4538910/keywords
[9]
Duan B X, Zhang B, Li Z J. New lateral super junction MOSFETs with n+-floating layer on high-resistance substrate. Chinese Journal of Semiconductors, 2007, 28(2):166 http://ieeexplore.ieee.org/document/4538910/keywords
[10]
Permthammasin K, Wachutka G, Schmitt M, et al. New 600V lateral superjunction power MOSEFTs based on embedded non-uniform column structure. Proc ASDAM, 2006:263 doi: 10.1088/1674-4926/35/10/104006/meta
Fig. 1.  Three-dimensional view of double super junction (DSJ) LDMOS.

Fig. 2.  Equipotential contour distributions of (a) the proposed DSJ device and (b) the CSJ device.

Fig. 3.  Lateral electric field profiles at the "z=0" of (a) the proposed DSJ LDMOS and (b) the CSJ-LDMOS

Fig. 4.  Influence of the doping concentration $N_{\rm A1}$, $N_{\rm D1}$ and $N_{\rm A2}$, $N_{\rm D2}$ on the BV and $R_{\rm on, \, sp}$ in MSJ compared with this in CSJ. (a) BV against $N_{1}$, $N_{2}$ ($N_{\rm A1}=N_{\rm D1}=N_{1}$, $N_{\rm A2}=N_{\rm D2} =N_{2}$, $P_{\rm SUB}$ $=$ 3 $\times $ 10$^{14}$ cm$^{-3})$. (b) Influence of $N_{\rm A}$, $N_{\rm D}$ on BV and $R_{\rm on, \, sp}$ ($N_{\rm A1}=N_{\rm A2}=N_{\rm A}$, $N_{\rm D1}=N_{\rm D2}=N_{\rm D}$, $P_{\rm SUB}$ $=$ 3 $\times$ 10$^{14}$ cm$^{-3})$. (c) Influence of $N_{\rm A2}$, $N_{\rm D2}$ on BV and $R_{\rm on, \, sp}$ ($N_{\rm D2}=N_{\rm D}$, $N_{\rm A2}=N_{\rm A}$, $N_{\rm A1}$ $=$ $N_{\rm D1}$ $=$ 1 $\times $ 10$^{16}$ cm$^{-3}$, $P_{\rm SUB}$ $=$ 3 $\times $ 10$^{14}$ cm$^{-3})$. (d) Influence of $N_{\rm A1}$, $N_{\rm D1}$ on BV and $R_{\rm on, \, sp}$ ($N_{\rm A2}=N_{\rm D2}$ $=$ 1 $\times$ 10$^{16}$ cm$^{-3}$, $P_{\rm SUB}$ $=$ 3 $\times $ 10$^{14}$ cm$^{-3})$.

Fig. 5.  Influences of the N1(NA1= ND1 = N1) on BV and Ron, sp(tsj1 = 2um, NA1=5×1015cm-3, ND1 = 12.5×1015cm-3, NA2= 5 × 1015 cm-3).

Fig. 6.  Dependence BV on $t_{\rm sj2}$ and $N_{\rm D2}$, ($t_{\rm sj1}$ $=$ 2 $\mu $m, $N_{\rm D1}=N_{\rm A1}$ $=$ 1 $\times $ 10$^{16}$ cm$^{-3}$, $N_{\rm A2}$ $=$ 5 $\times$ 10$^{15}$ cm$^{-3}$, $P_{\rm SUB}$ $=$ 3 $\times $ 10$^{14}$ cm$^{-3})$.

Fig. 7.  Influences of doping imbalance on BV.

Fig. 8.  Transfer characteristic curves of proposed device and CSJ LDMOS.

Table 1.   Parameters used in the simulation

Table 2.   Optimal results for proposed structure and other device.

[1]
Rub M, Bar M, Deml G, et al. A 600 V 8.7 Ohmmm2 lateral superjunction transistor. Proc ISPSD, 2006:1 http://ieeexplore.ieee.org/document/1666132/keywords
[2]
Nassif-Khalil S G, Salama C A T. Super-junction LDMOS on a silicon-on-sapphire substrate. IEEE Trans Electron Devices, 2003, 50(5):1385 doi: 10.1109/TED.2003.813460
[3]
Park I Y, Salama C A T. New super-junction LDMOS with N-buffer layer. IEEE Trans Electron Devices, 2006, 53(8):1909 doi: 10.1109/TED.2006.877007
[4]
Chen W J, Zhang B, Li Z J. Realizing high breakdown voltage SJ-LDMOS on bulk silicon using a partial n-buried layer. Chinese Journal of Semiconductors, 2007, 28(3):355 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BDTX200703008.htm
[5]
Wu W, Zhang B, Fang J, et al. High-voltage super-junction lateral double-diffused metal oxide semiconductor with a partial lightly doped pillar. Chin Phys B, 2013, 22(6):637.
[6]
Zhang B, Wang W L, Chen W J, et al. High-voltage LDMOS with charge-balanced surface low on-resistance path layer. IEEE Electron Device Lett, 200930(8):849 doi: 10.1109/LED.2009.2023541
[7]
Kanechika M, Kodama M, Uesugi T, et al. A concept of SOI RESURF lateral devices with striped trench electrodes. IEEE Trans Electron Devices, 2005, 52(6):1205 doi: 10.1109/TED.2005.848093
[8]
Onishi Y, Wang H, Xu H P E, et al. SJ-FINFET:a new low voltage lateral superjunction MOSFET. Proc ISPSD, 2008:111 http://ieeexplore.ieee.org/document/4538910/keywords
[9]
Duan B X, Zhang B, Li Z J. New lateral super junction MOSFETs with n+-floating layer on high-resistance substrate. Chinese Journal of Semiconductors, 2007, 28(2):166 http://ieeexplore.ieee.org/document/4538910/keywords
[10]
Permthammasin K, Wachutka G, Schmitt M, et al. New 600V lateral superjunction power MOSEFTs based on embedded non-uniform column structure. Proc ASDAM, 2006:263 doi: 10.1088/1674-4926/35/10/104006/meta
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3570 Times PDF downloads: 25 Times Cited by: 0 Times

    History

    Received: 12 March 2014 Revised: 27 April 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Hui Zhu, Haiou Li, Qi Li, Yuanhao Huang, Xiaoning Xu, Hailiang Zhao. A novel multiple super junction power device structure with low specific on-resistance[J]. Journal of Semiconductors, 2014, 35(10): 104006. doi: 10.1088/1674-4926/35/10/104006 H Zhu, H O Li, Q Li, Y H Huang, X N Xu, H L Zhao. A novel multiple super junction power device structure with low specific on-resistance[J]. J. Semicond., 2014, 35(10): 104006. doi: 10.1088/1674-4926/35/10/104006.Export: BibTex EndNote
      Citation:
      Hui Zhu, Haiou Li, Qi Li, Yuanhao Huang, Xiaoning Xu, Hailiang Zhao. A novel multiple super junction power device structure with low specific on-resistance[J]. Journal of Semiconductors, 2014, 35(10): 104006. doi: 10.1088/1674-4926/35/10/104006

      H Zhu, H O Li, Q Li, Y H Huang, X N Xu, H L Zhao. A novel multiple super junction power device structure with low specific on-resistance[J]. J. Semicond., 2014, 35(10): 104006. doi: 10.1088/1674-4926/35/10/104006.
      Export: BibTex EndNote

      A novel multiple super junction power device structure with low specific on-resistance

      doi: 10.1088/1674-4926/35/10/104006
      Funds:

      the China Postdoctoral Science Foundation Funded Project 2013T60566

      the State key Laboratory of Electronic Thin Films and Integrated Devices (UESTC) of China KFJJ201205

      Project supported by the State key Laboratory of Electronic Thin Films and Integrated Devices (UESTC) of China (No. KFJJ201205), the Guangxi Natural Science Foundation (No. 2013GXNSFGA019003), and the China Postdoctoral Science Foundation Funded Project (Nos. 2012M521127, 2013T60566)

      the Guangxi Natural Science Foundation 2013GXNSFGA019003

      the China Postdoctoral Science Foundation Funded Project 2012M521127

      More Information
      • Corresponding author: Li Haiou, Email:290557482@qq.com
      • Received Date: 2014-03-12
      • Revised Date: 2014-04-27
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return