SEMICONDUCTOR DEVICES

Room temperature quantum cascade detector operating at 4.3 μm

Xuejiao Wang, Junqi Liu, Shenqiang Zhai, Fengqi Liu and Zhanguo Wang

+ Author Affiliations

 Corresponding author: Liu Junqi, Email:jqliu@semi.ac.cn

PDF

Abstract: A strain-compensated InP-based InGaAs/InAlAs quantum cascade detector grown by solid source molecular beam epitaxy is demonstrated. The device operates at 4.3 μm up to room temperature (300 K) with a responsivity of 1.27 mA/W and a Johnson noise limited detectivity of 1.02×107 cm·Hz1/2/W. At 80 K, the responsivity and detectivity are 14.55 mA/W and 1.26×1010 cm·Hz1/2/W, respectively. According to the response range, this detector is much suitable for greenhouse gas detection.

Key words: infrared detectorquantum cascademolecular beam epitaxy



[1]
Liu H C, Li J M, Brown J M, et al. Quantum well intersubband heterodyne infrared detection up to 82 GHz. Appl Phys Lett, 1995, 67:1594 doi: 10.1063/1.114950
[2]
Grant P D, Dudek R, Wolfson L, et al. Ultra-high frequency monolithically integrated quantum well infrared photodetector up to 75 GHz. Electron Lett, 2005, 41:214 doi: 10.1049/el:20057428
[3]
Li Hongwei, Li Wei, Huang Qi, et al. Development of broadband 3-5μm quantum well infrared photodetectors. Chinese Journal of Semiconductors, 2000, 21(12):1220 http://www.oalib.com/paper/1519499
[4]
Shi Yanli, Deng Jun, Du Jinyu, et al. Analysis of dark current characteristic of novel GaAs/AlGaAs quantum well infrared photodetectors. Journal of Semiconductors, 2001, 22(4):503 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=200591651257617&flag=1
[5]
Levine B F. Quantum-well infrared photodetectors. J Appl Phys, 1993, 74:R1 doi: 10.1063/1.354252
[6]
Liu H C, Dudek R, Shen A, et al. High absorption (>> 90%) quantum-well infrared photodetectors. Appl Phys Lett, 2001, 79:4237 doi: 10.1063/1.1425066
[7]
Sarusi G, Gunapala S D, Park J S, et al. Design and performance of very long-wavelength GaAs/AlxGa1-x As quantum-well infrared photodetectors. J Appl Phys, 1994, 76:6001 doi: 10.1063/1.358351
[8]
Gendron L, Carras M, Huynh A, et al. Quantum cascade photodetector. Appl Phys Lett, 2004, 85:2824 doi: 10.1063/1.1781731
[9]
Zhai S Q, Liu J Q, Liu F Q, et al. A normal incident quantum cascade detector enhanced by surface plasmons. Appl Phys Lett, 2012, 100:181104 doi: 10.1063/1.4710523
[10]
Kong N, Liu J Q, Li L, et al. A 10.7μm InGaAs/InAlAs quantum cascade detector. Chin Phys Lett, 2010, 27(12):128503 doi: 10.1088/0256-307X/27/12/128503
[11]
Koeniguer C, Gendron L, Berger V, et al. Analysis of performances of quantum cascade detectors. Proc SPIE, 2005, 5957:595704 doi: 10.1117/12.623790
[12]
Sakr S, Giraud E, Dussaigne A, et al. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm. Appl Phys Lett, 2012, 100(18):181103 doi: 10.1063/1.4707904
[13]
Graf M, Scalari G, Hofstetter D, et al. Terahertz range quantum well infrared photodetector. Appl Phys Lett, 2004, 84(4):475 doi: 10.1063/1.1641165
[14]
Hofstetter D, Graf M, Aellen T, et al. 23 GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35μm. Appl Phys Lett, 2006, 89:061119 doi: 10.1063/1.2269408
[15]
Hostut M, Alyoruk M, Ergun Y, et al. Three-color broadband asymmetric quantum well infrared photodetectors in long wavelength infrared range (LWIR). Appl Phys A, 2009, 98(2):269 http://cn.bing.com/academic/profile?id=35eb48f495a8557b1f74699275a7b84a&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Cibella S, Ortolani M, Leoni R, et al. Wide dynamic range terahertz detector pixel for active spectroscopic imaging with quantum cascade lasers. Appl Phys Lett, 2009, 95(21):213501 doi: 10.1063/1.3265958
[17]
Kong N, Liu J Q, Li L, et al. Strain-compensated InGaAs/InAlAs quantum cascade detector of 4.5μm operating at room temperature. Chin Phys Lett, 2010, 27(3):038501 doi: 10.1088/0256-307X/27/3/038501
[18]
Hofstetter D, Di Francesco J, Hvozdara L, et al. CO2 isotope sensor using a broadband infrared source, a spectrally narrow 4.4μm quantum cascade detector, and a Fourier spectrometer. Appl Phys B:Lasers Opt, 2011, 103:967 doi: 10.1007/s00340-011-4532-1
[19]
Van de Walle C G. Band lineups and deformation potentials in the model-solid theory. Phys Rev B, 1989, 39:1871 doi: 10.1103/PhysRevB.39.1871
[20]
Giorgetta F R, Baumann E, Graf M, et al. Quantum cascade detectors. IEEE J Quantum Electron, 2009, 45:1039 doi: 10.1109/JQE.2009.2017929
Fig. 1.  Energy band diagram of one period of the 4.3 $\mu $m QCD. Electrons photoexcited by photons jump from $E_1$ to $E_2$. The energy state of the first quantum well of the cascade structure is coupled with $E_2$, and the succedent chirped superlattice forms a LO phonon energy stair between subsequent wells of the cascade structure, providing efficient extraction of the electrons. The arrows show the transition path of electrons.

Fig. 2.  (Color online) Responsivity spectra of the QCD measured at different temperatures from 80 to 300 K. The top "hanging" curve describes the infrared absorptivity caused by the ambient carbon dioxide.

Fig. 3.  (Color online) Dark current of the QCD measured at different temperatures between 80 and 300 K as a function of applied bias voltage in dark conditions.

Fig. 4.  Calculated resistance-area product $R_{0}A$ around zero bias and Johnson noise limited detectivity $D^{\ast}$ for the 4.3 $\mu $m QCD.

[1]
Liu H C, Li J M, Brown J M, et al. Quantum well intersubband heterodyne infrared detection up to 82 GHz. Appl Phys Lett, 1995, 67:1594 doi: 10.1063/1.114950
[2]
Grant P D, Dudek R, Wolfson L, et al. Ultra-high frequency monolithically integrated quantum well infrared photodetector up to 75 GHz. Electron Lett, 2005, 41:214 doi: 10.1049/el:20057428
[3]
Li Hongwei, Li Wei, Huang Qi, et al. Development of broadband 3-5μm quantum well infrared photodetectors. Chinese Journal of Semiconductors, 2000, 21(12):1220 http://www.oalib.com/paper/1519499
[4]
Shi Yanli, Deng Jun, Du Jinyu, et al. Analysis of dark current characteristic of novel GaAs/AlGaAs quantum well infrared photodetectors. Journal of Semiconductors, 2001, 22(4):503 http://www.jos.ac.cn/bdtxbcn/ch/reader/view_abstract.aspx?file_no=200591651257617&flag=1
[5]
Levine B F. Quantum-well infrared photodetectors. J Appl Phys, 1993, 74:R1 doi: 10.1063/1.354252
[6]
Liu H C, Dudek R, Shen A, et al. High absorption (>> 90%) quantum-well infrared photodetectors. Appl Phys Lett, 2001, 79:4237 doi: 10.1063/1.1425066
[7]
Sarusi G, Gunapala S D, Park J S, et al. Design and performance of very long-wavelength GaAs/AlxGa1-x As quantum-well infrared photodetectors. J Appl Phys, 1994, 76:6001 doi: 10.1063/1.358351
[8]
Gendron L, Carras M, Huynh A, et al. Quantum cascade photodetector. Appl Phys Lett, 2004, 85:2824 doi: 10.1063/1.1781731
[9]
Zhai S Q, Liu J Q, Liu F Q, et al. A normal incident quantum cascade detector enhanced by surface plasmons. Appl Phys Lett, 2012, 100:181104 doi: 10.1063/1.4710523
[10]
Kong N, Liu J Q, Li L, et al. A 10.7μm InGaAs/InAlAs quantum cascade detector. Chin Phys Lett, 2010, 27(12):128503 doi: 10.1088/0256-307X/27/12/128503
[11]
Koeniguer C, Gendron L, Berger V, et al. Analysis of performances of quantum cascade detectors. Proc SPIE, 2005, 5957:595704 doi: 10.1117/12.623790
[12]
Sakr S, Giraud E, Dussaigne A, et al. Two-color GaN/AlGaN quantum cascade detector at short infrared wavelengths of 1 and 1.7μm. Appl Phys Lett, 2012, 100(18):181103 doi: 10.1063/1.4707904
[13]
Graf M, Scalari G, Hofstetter D, et al. Terahertz range quantum well infrared photodetector. Appl Phys Lett, 2004, 84(4):475 doi: 10.1063/1.1641165
[14]
Hofstetter D, Graf M, Aellen T, et al. 23 GHz operation of a room temperature photovoltaic quantum cascade detector at 5.35μm. Appl Phys Lett, 2006, 89:061119 doi: 10.1063/1.2269408
[15]
Hostut M, Alyoruk M, Ergun Y, et al. Three-color broadband asymmetric quantum well infrared photodetectors in long wavelength infrared range (LWIR). Appl Phys A, 2009, 98(2):269 http://cn.bing.com/academic/profile?id=35eb48f495a8557b1f74699275a7b84a&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Cibella S, Ortolani M, Leoni R, et al. Wide dynamic range terahertz detector pixel for active spectroscopic imaging with quantum cascade lasers. Appl Phys Lett, 2009, 95(21):213501 doi: 10.1063/1.3265958
[17]
Kong N, Liu J Q, Li L, et al. Strain-compensated InGaAs/InAlAs quantum cascade detector of 4.5μm operating at room temperature. Chin Phys Lett, 2010, 27(3):038501 doi: 10.1088/0256-307X/27/3/038501
[18]
Hofstetter D, Di Francesco J, Hvozdara L, et al. CO2 isotope sensor using a broadband infrared source, a spectrally narrow 4.4μm quantum cascade detector, and a Fourier spectrometer. Appl Phys B:Lasers Opt, 2011, 103:967 doi: 10.1007/s00340-011-4532-1
[19]
Van de Walle C G. Band lineups and deformation potentials in the model-solid theory. Phys Rev B, 1989, 39:1871 doi: 10.1103/PhysRevB.39.1871
[20]
Giorgetta F R, Baumann E, Graf M, et al. Quantum cascade detectors. IEEE J Quantum Electron, 2009, 45:1039 doi: 10.1109/JQE.2009.2017929
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2358 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 24 March 2014 Revised: 13 May 2014 Online: Published: 01 October 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xuejiao Wang, Junqi Liu, Shenqiang Zhai, Fengqi Liu, Zhanguo Wang. Room temperature quantum cascade detector operating at 4.3 μm[J]. Journal of Semiconductors, 2014, 35(10): 104009. doi: 10.1088/1674-4926/35/10/104009 X J Wang, J Q Liu, S Q Zhai, F Q Liu, Z G Wang. Room temperature quantum cascade detector operating at 4.3 μm[J]. J. Semicond., 2014, 35(10): 104009. doi: 10.1088/1674-4926/35/10/104009.Export: BibTex EndNote
      Citation:
      Xuejiao Wang, Junqi Liu, Shenqiang Zhai, Fengqi Liu, Zhanguo Wang. Room temperature quantum cascade detector operating at 4.3 μm[J]. Journal of Semiconductors, 2014, 35(10): 104009. doi: 10.1088/1674-4926/35/10/104009

      X J Wang, J Q Liu, S Q Zhai, F Q Liu, Z G Wang. Room temperature quantum cascade detector operating at 4.3 μm[J]. J. Semicond., 2014, 35(10): 104009. doi: 10.1088/1674-4926/35/10/104009.
      Export: BibTex EndNote

      Room temperature quantum cascade detector operating at 4.3 μm

      doi: 10.1088/1674-4926/35/10/104009
      Funds:

      the National Natural Science Foundation of China 61376051

      the National Basic Research Program of China 2013CB632802/04

      the National Basic Research Program of China 10990103

      Project supported by the National Basic Research Program of China (No. 2013CB632802/04) and the National Natural Science Foundation of China (Nos. 61376051, 10990103)

      More Information
      • Corresponding author: Liu Junqi, Email:jqliu@semi.ac.cn
      • Received Date: 2014-03-24
      • Revised Date: 2014-05-13
      • Published Date: 2014-10-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return