SEMICONDUCTOR MATERIALS

Effects of defects on the electronic properties of WTe2 armchair nanoribbons

Bahniman Ghosh1, 2, Abhishek Gupta2 and Bhupesh Bishnoi2,

+ Author Affiliations

 Corresponding author: Bahniman Ghosh, Email:bbishnoi@iitk.ac.in

PDF

Abstract: We have investigated the electronic properties of WTe2 armchair nanoribbons with defects. WTe2 nanoribbons can be categorized depending on the edge structure in two types:armchair and zigzag. WTe2 in its bulk form has an indirect band gap but nanoribbons and nanosheets of WTe2 have direct band gaps. Interestingly, the zigzag nanoribbon is metallic while the armchair nanoribbons are semiconducting. Thus they can find applications in device fabrication. Therefore, it is very important to study the effect of defects on the electronic properties of the armchair nanoribbons as these defects can impair the device properties and characteristics. We have considered defects such as:vacancy, rough edge, wrap, ripple and twist in this work. We report the band gap variation with these defects. We have also studied the change in band gap and total energy with varying degrees of wrap, ripple and twist.

Key words: electronic propertyWTe2 armchair nanoribbonsdefects



[1]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7:699 doi: 10.1038/nnano.2012.193
[2]
Mak K, Lee C, Hone J, Shan J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105:2 https://academic.oup.com/nsr
[3]
Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10:1271 doi: 10.1021/nl903868w
[4]
Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be. Nano Lett, 2011, 11:3768 doi: 10.1021/nl2018178
[5]
Alam K, Lake R K, Member S. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans Electron Devices, 2012, 59:3250 doi: 10.1109/TED.2012.2218283
[6]
Liu L, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices, 2011, 58:3042 doi: 10.1109/TED.2011.2159221
[7]
Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2. Nano Lett, 2013, 13:1416 doi: 10.1021/nl400516a
[8]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnol, 2011, 6:147 doi: 10.1038/nnano.2010.279
[9]
Lin M W, Liu L, Lan Q, et al. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J Phys D:Appl Phys, 2012, 45:345102 doi: 10.1088/0022-3727/45/34/345102
[10]
Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6:74 doi: 10.1021/nn2024557
[11]
Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113:3766 doi: 10.1021/cr300263a
[12]
Wang Y C, Miao M S, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys, 2012, 137:224108 doi: 10.1063/1.4769731
[13]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666 doi: 10.1126/science.1102896
[14]
Gmelin. Handbook of inorganic and organometallic chemistry. 8th ed. Vol. B7, 8, 9. Berlin:Springer-Verlagm, 1985:16
[15]
Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys, 1969, 18:193 doi: 10.1080/00018736900101307
[16]
Ding Y, Wang Y, Ni J, et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te). Phys B, 2011, 406:2254 doi: 10.1016/j.physb.2011.03.044
[17]
Li Y F, Zhou Z, Zhang S B, et al. MoS2 Nanoribbons:High stability and unusual electronic and magnetic properties. J Am Chem Soc, 2008, 130:16739 doi: 10.1021/ja805545x
[18]
Tao H, Yanagisawa K, Zhang C, et al. Synthesis and growth mechanism of monodispersed MoS2 sheets/carbon microspheres. Cryst Eng Comm, 2012, 14:3027 doi: 10.1039/c2ce06543f
[19]
Hod O, Peralta J, Scuseria G. Edge effects in finite elongated graphene nanoribbons. Phys Rev B, 2007, 76:233401 doi: 10.1103/PhysRevB.76.233401
[20]
Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Mater, 2013, 12:321 doi: 10.1038/nmat3542
[21]
Atomistix ToolKit version 13. 8, Quantum Wise A/S (www.quantumwise.com)
[22]
Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65:165401 doi: 10.1103/PhysRevB.65.165401
[23]
Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter, 2002, 14:2745 doi: 10.1088/0953-8984/14/11/302
[24]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13:5188 doi: 10.1103/PhysRevB.13.5188
Fig. 1.  (Color online) Schematic of single layer periodic of WTe$_{2}$. The blue atom is tellurium while the other one is tungsten.

Fig. 2.  (Color online) Schematic of an armchair nanoribbon of WTe$_{2}$ (a) top view and (b) side view. $N_{\rm a}$ represents the number of atoms along the width of the nanoribbon. The blue atom is Tellurium while the other one is Tungsten.

Fig. 3.  (Color online) Schematic of defects and deformations in WTe$_{2}$ armchair nanoribbon. (a) Ripple. (b) Twist. (c) Rough edge. (d) Wrap. (e) Vacancy.

Fig. 4.  Band structure of WTe$_{2}$ in bulk form.

Fig. 5.  Band structure of single layer sheet of WTe$_{2}$.

Fig. 6.  Band structure of $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon.

Fig. 7.  Band structure of $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon with a rough edge defect.

Fig. 8.  Band structure of $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon with a vacancy defect (tungsten removed).

Fig. 9.  Band structure of $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon with a vacancy defect (tellurium removed).

Fig. 10.  Band structure of wrapped $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon. The wrapping angle is 30°.

Fig. 11.  Band gap in WTe$_{2}$ armchair nanoribbon as a function of the wrapping angle.

Fig. 12.  Change in energy of WTe$_{2}$ armchair nanoribbon as a function of the wrapping angle.

Fig. 13.  Band structure of rippled $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon. The ripple amplitude is 0.5 Å.

Fig. 14.  Band gap in WTe$_{2}$ armchair nanoribbon as a function of ripple amplitude.

Fig. 15.  Change in energy of WTe$_{2}$ armchair nanoribbon as a function of ripple amplitude.

Fig. 16.  Band structure of twisted $N_{\rm a}$ $=$ 10 WTe$_{2}$ armchair nanoribbon. The twisting angle is 10°.

Fig. 17.  Band gap in WTe$_{2}$ armchair nanoribbon as a function of twist angle.

Fig. 18.  Change in energy of WTe$_2$ armchair nanoribbon as a function of twist angle.

[1]
Wang Q H, Kalantar-Zadeh K, Kis A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7:699 doi: 10.1038/nnano.2012.193
[2]
Mak K, Lee C, Hone J, Shan J, et al. Atomically thin MoS2:a new direct-gap semiconductor. Phys Rev Lett, 2010, 105:2 https://academic.oup.com/nsr
[3]
Splendiani A, Sun L, Zhang Y, et al. Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010, 10:1271 doi: 10.1021/nl903868w
[4]
Yoon Y, Ganapathi K, Salahuddin S. How good can monolayer MoS2 transistors be. Nano Lett, 2011, 11:3768 doi: 10.1021/nl2018178
[5]
Alam K, Lake R K, Member S. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans Electron Devices, 2012, 59:3250 doi: 10.1109/TED.2012.2218283
[6]
Liu L, Kumar S B, Ouyang Y, et al. Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices, 2011, 58:3042 doi: 10.1109/TED.2011.2159221
[7]
Sundaram R S, Engel M, Lombardo A, et al. Electroluminescence in single layer MoS2. Nano Lett, 2013, 13:1416 doi: 10.1021/nl400516a
[8]
Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors. Nature Nanotechnol, 2011, 6:147 doi: 10.1038/nnano.2010.279
[9]
Lin M W, Liu L, Lan Q, et al. Mobility enhancement and highly efficient gating of monolayer MoS2 transistors with polymer electrolyte. J Phys D:Appl Phys, 2012, 45:345102 doi: 10.1088/0022-3727/45/34/345102
[10]
Yin Z, Li H, Li H, et al. Single-layer MoS2 phototransistors. ACS Nano, 2012, 6:74 doi: 10.1021/nn2024557
[11]
Xu M S, Liang T, Shi M M, et al. Graphene-like two-dimensional materials. Chem Rev, 2013, 113:3766 doi: 10.1021/cr300263a
[12]
Wang Y C, Miao M S, Lv J, et al. An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm. J Chem Phys, 2012, 137:224108 doi: 10.1063/1.4769731
[13]
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306:666 doi: 10.1126/science.1102896
[14]
Gmelin. Handbook of inorganic and organometallic chemistry. 8th ed. Vol. B7, 8, 9. Berlin:Springer-Verlagm, 1985:16
[15]
Wilson J A, Yoffe A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys, 1969, 18:193 doi: 10.1080/00018736900101307
[16]
Ding Y, Wang Y, Ni J, et al. First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te). Phys B, 2011, 406:2254 doi: 10.1016/j.physb.2011.03.044
[17]
Li Y F, Zhou Z, Zhang S B, et al. MoS2 Nanoribbons:High stability and unusual electronic and magnetic properties. J Am Chem Soc, 2008, 130:16739 doi: 10.1021/ja805545x
[18]
Tao H, Yanagisawa K, Zhang C, et al. Synthesis and growth mechanism of monodispersed MoS2 sheets/carbon microspheres. Cryst Eng Comm, 2012, 14:3027 doi: 10.1039/c2ce06543f
[19]
Hod O, Peralta J, Scuseria G. Edge effects in finite elongated graphene nanoribbons. Phys Rev B, 2007, 76:233401 doi: 10.1103/PhysRevB.76.233401
[20]
Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Mater, 2013, 12:321 doi: 10.1038/nmat3542
[21]
Atomistix ToolKit version 13. 8, Quantum Wise A/S (www.quantumwise.com)
[22]
Brandbyge M, Mozos J L, Ordejón P, et al. Density-functional method for nonequilibrium electron transport. Phys Rev B, 2002, 65:165401 doi: 10.1103/PhysRevB.65.165401
[23]
Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation. J Phys Condens Matter, 2002, 14:2745 doi: 10.1088/0953-8984/14/11/302
[24]
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13:5188 doi: 10.1103/PhysRevB.13.5188
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2811 Times PDF downloads: 10 Times Cited by: 0 Times

    History

    Received: 01 April 2014 Revised: 24 June 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons[J]. Journal of Semiconductors, 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002 B Ghosh, A Gupta, B Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons[J]. J. Semicond., 2014, 35(11): 113002. doi:  10.1088/1674-4926/35/11/113002.Export: BibTex EndNote
      Citation:
      Bahniman Ghosh, Abhishek Gupta, Bhupesh Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons[J]. Journal of Semiconductors, 2014, 35(11): 113002. doi: 10.1088/1674-4926/35/11/113002

      B Ghosh, A Gupta, B Bishnoi. Effects of defects on the electronic properties of WTe2 armchair nanoribbons[J]. J. Semicond., 2014, 35(11): 113002. doi:  10.1088/1674-4926/35/11/113002.
      Export: BibTex EndNote

      Effects of defects on the electronic properties of WTe2 armchair nanoribbons

      doi: 10.1088/1674-4926/35/11/113002
      More Information
      • Corresponding author: Bahniman Ghosh, Email:bbishnoi@iitk.ac.in
      • Received Date: 2014-04-01
      • Revised Date: 2014-06-24
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return