SEMICONDUCTOR DEVICES

Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor

Shibir Basak1, , Pranav Kumar Asthana1, Yogesh Goswami1 and Bahniman Ghosh1, 2,

+ Author Affiliations

 Corresponding author: Shibir Basak, Email:basakshibir@gmail.com; Bahniman Ghosh, Email:bghosh@utexas.edu

PDF

Abstract: We propose a dynamic threshold voltage junctionless tunnel FET (DT-JLTFET) in which the threshold voltage can be dynamically adjusted, resulting in higher ON-current. Through 2D numerical simulations, it is presented that the threshold voltage in the DT-JLTFET can be adjusted by applying a voltage to the adjust gate. The impact of the threshold voltage shift on the overall performance of the device is also studied. A comparison is made between the dynamic threshold voltage characteristics of a silicon JLTFET and a Si0.7Ge0.3 source JLTFET.

Key words: SiGetunnel field effect transistorON-current



[1]
Riel H, Ionescu A M. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479:329 doi: 10.1038/nature10679
[2]
Koswatta S O, Lundstrom M S, Nikonov D E. Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices, 2009, 56:456 doi: 10.1109/TED.2008.2011934
[3]
Boucart K, Ionescu A M. Double-gate tunnel fet with high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54:1725 doi: 10.1109/TED.2007.899389
[4]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51:1500 doi: 10.1016/j.sse.2007.09.014
[5]
Kim S H, Agarwal S, Jacobson Z A, et al. Tunnel field effect transistor with raised germanium source. IEEE Electron Device Lett, 2010, 31:1107 doi: 10.1109/LED.2010.2061214
[6]
Mookerjea S, Datta S. Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25 V supply voltage logic applications. Device Res Conf, 2008:47 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4800730
[7]
Patel N, Ramesha A, Mahapatra S. Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron J, 2008, 39:1671 doi: 10.1016/j.mejo.2008.02.020
[8]
Toh E H, Wang G H, Chan L, et al. Device physics and guiding principles for the design of double-gate tunne ling field effect transistor with silicon-germanium source heterojunction. Appl Phys Lett, 2007, 91:243505 doi: 10.1063/1.2823606
[9]
Shih C, Chien N D. Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett, 2011, 32:1498 doi: 10.1109/LED.2011.2164512
[10]
Riel H, Moselund K E, Bessire C, et al. InAs-Si heterojunction nanowire tunnel diodes and tunnel FETs. IEEE Int Electron Devices Meeting, 2012:16 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6479056&searchWithin%3Dp_Authors%3A.QT.Schenk%2C+%2FA%2F..QT.
[11]
Moselund K E, Schmid H, Bessire C, et al. InAs-Si nanowire heterojunction tunnel FETs. IEEE Electron Device Lett, 2012, 33:1453 doi: 10.1109/LED.2012.2206789
[12]
Li R, Lu Y, Zhou G, et al. AlGaSb/InAs tunnel field-effect transistor with on-current of 78μA/μm at 0.5 V. IEEE Electron Device Lett, 2012, 33:363 doi: 10.1109/LED.2011.2179915
[13]
Schenk A, Rhyner R, Luisier M, et al. Analysis of Si, InAs, and Si-InAs tunnel diodes and tunnel FETs using different transport models.Int Conf Simul Semicond Process Devices, 2011:263. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6035075
[14]
Bhuwalka K K, Sedlmaier S, Ludsteck A K, et al. Vertical tunnel field-effect transistor. IEEE Trans Electron Devices, 2004, 51:279 doi: 10.1109/TED.2003.821575
[15]
Chen J, Klaumnzer S, Lux-Steiner M C, et al. Vertical nanowire transistors with low leakage current. Appl Phys Lett, 2004, 85:1401 doi: 10.1063/1.1784037
[16]
Mookerjea S, Mohata D, Mayer T, et al. Temperature-dependent I-V characteristics of a vertical In0.53Ga0.47As tunnel FET. IEEE Electron Device Lett, 2010, 31:564 doi: 10.1109/LED.2010.2045631
[17]
Bhuwalka K K, Schulze J, Eisele I. Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer. Jpn J Appl Phys, 2004, 43:4073 doi: 10.1143/JJAP.43.4073
[18]
Bhuwalka K K, Schulze J, Eisele I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans Electron Devices, 2005, 52:909 doi: 10.1109/TED.2005.846318
[19]
Bal P, Akram M W, Mondal P, et al. Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron, 2013, 12:782 doi: 10.1007/s10825-013-0483-6
[20]
Ghosh B, Akram M W. Junctionless tunnel field effect transistor. IEEE Electron Device Lett, 2013, 34:584 doi: 10.1109/LED.2013.2253752
[21]
Mondal P, Ghosh B, Bal P. Planar junctionless transistor with non-uniform channel doping. Appl Phys Lett, 2013, 102:133505 doi: 10.1063/1.4801443
[22]
Bal P, Ghosh B, Mondal P, et al. Dual material gate junctionless tunnel field effect transistor. J Comput Electron, 2014, 13:230 doi: 10.1007/s10825-013-0505-4
[23]
Assaderaghi F, Sinitsky D, Parke S A, et al. Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Trans Electron Devices, 1997, 44:414 doi: 10.1109/16.556151
[24]
He J, Chan M. Numerical study on nanowire tunnel FET with dynamic threshold operation architecture. IEEE Int Conf Electron Devices Solid-State Circuits, 2013:1 http://ieeexplore.ieee.org/document/6628211/
[25]
Vandooren A, Leonelli D, Rooyackers R, et al. Trap-assisted tunneling in vertical Si and SiGe hetero-tunnel-FETs. IEEE Int Silicon-Germanium Technol Device Meeting, 2012:1 http://www.sciencedirect.com/science/article/pii/S0038110113000397
[26]
SILVACO, ATLAS User's Manual, 2011
[27]
Schenk A. A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon. Solid-State Electron, 1992, 35:1585 doi: 10.1016/0038-1101(92)90184-E
[28]
Crowell C R, Rideout V L. Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid-State Electron, 1969, 12:89 doi: 10.1016/0038-1101(69)90117-8
[29]
Murphy E L, Good R H. Thermionic emission, field emission, and the transition region. Phys Rev, 1956, 102:1464 doi: 10.1103/PhysRev.102.1464
[30]
Crowell C R, Sze S M. Current transport in metal-semiconductor barriers. Solid-State Electron, 1966, 9:1035 doi: 10.1016/0038-1101(66)90127-4
[31]
Mookerjea S, Krishnan R, Datta S, et al. Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans Electron Devices, 2009, 56:2092 doi: 10.1109/TED.2009.2026516
Fig. 1.  (a) Schematic diagram of n-type Si JLTFET with the secondary gate used as an adjust gate. (b) Schematic diagram of a proposed Si n-type JLTFET with Si$_{1-x}$Ge$_{x}$ ($x$ $=$ 0.3) as a source forming a heterojunction below the control gate.

Fig. 2.  Schematic diagram of the energy-band diagram of the OFF-state ($V_{\rm d}$ $=$ 0.9 V and $V_{\rm g}$ $=$ 0 V) of Si JLTFET and Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET with adjust gate bias equal to zero. Region I is the drain region, and regions Ⅱ-Ⅳ correspond to the regions below the control gate, spacer and adjust gate respectively. The inset shows the energy range for tunneling ($t_{\rm h})$ and the width of the energy barrier for tunneling ($t_{\rm w})$ for an ON-state JLTFET.

Fig. 3.  Energy-band diagram of the (a) OFF-state ($V_{\rm d}$ $=$ 0.9 V and $V_{\rm g}$ $=$ 0 V) and (b) ON-state ($V_{\rm d}$ $=$ 0.9 V and $V_{\rm g}$ $=$ 0.9 V) Si JLTFET, for different adjust gate voltages ($V_{\rm a})$.

Fig. 4.  Simulated transfer characteristics of Si JLTFET depicting the dynamic threshold (DT) operation of the device with different adjust gate voltages ($V_{\rm a})$.

Fig. 5.  Simulated transfer characteristics of Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET depicting the dynamic threshold (DT) operation for different bias voltages of adjust gate ($V_{\rm a})$.

Fig. 6.  Magnified images of the simulated energy band diagram of the conduction band corresponding to an axis along the center of the device for (a) the Si JLTFET and (b) the Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET. Regions II-IV correspond to the regions below the control gate, spacer and adjust gate respectively as shown in Fig. 2, and region V resembles the source electrode respectively.

Fig. 7.  (a) Plot to depict the change in threshold voltage ($V_{\rm T})$ with variation of the adjust gate voltage ($V_{\rm a})$ for both the Si JLTFET and the Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET. (b) Schematic diagram of the OFF-state ($V_{\rm d}$ $=$ 0.9 V and $V_{\rm g}$ $=$ 0 V) energy-band diagram of the Si JLTFET and the Si$_{0.7}$Ge$_{0.3}$ source JLTFET for $V_{\rm a}$ $=$ 0.8 V.

Fig. 8.  ON-current ($I_{\rm ON})$ and OFF-current ($I_{\rm OFF})$ versus adjust gate voltage for both Si JLTFET and Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET.

Fig. 9.  (a) Point subthreshold swing (SS$_{\rm PT})$ and (b) average subthreshold swing (SS$_{\rm AVG})$ versus adjust gate voltage for both Si and Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFETs.

Fig. 10.  $G_{\rm m}$ versus adjust gate voltage for both Si JLTFET and Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET.

Fig. 11.  (a) $C_{\rm gg}$ versus gate voltage for different values of adjust gate voltage in Si JLTFET. (b) $C_{\rm gg}$ versus gate voltage for different values of adjust gate voltage in Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET.

Fig. 12.  Delay versus adjust gate voltage for both Si JLTFET and Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFETs.

Fig. 13.  Cut-off frequency versus control gate voltage for different adjust gate voltages in (a) Si JLTFET and (b) Si-Si$_{0.7}$Ge$_{0.3}$ heterojunction JLTFET.

[1]
Riel H, Ionescu A M. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479:329 doi: 10.1038/nature10679
[2]
Koswatta S O, Lundstrom M S, Nikonov D E. Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices, 2009, 56:456 doi: 10.1109/TED.2008.2011934
[3]
Boucart K, Ionescu A M. Double-gate tunnel fet with high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54:1725 doi: 10.1109/TED.2007.899389
[4]
Boucart K, Ionescu A M. Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron, 2007, 51:1500 doi: 10.1016/j.sse.2007.09.014
[5]
Kim S H, Agarwal S, Jacobson Z A, et al. Tunnel field effect transistor with raised germanium source. IEEE Electron Device Lett, 2010, 31:1107 doi: 10.1109/LED.2010.2061214
[6]
Mookerjea S, Datta S. Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25 V supply voltage logic applications. Device Res Conf, 2008:47 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4800730
[7]
Patel N, Ramesha A, Mahapatra S. Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron J, 2008, 39:1671 doi: 10.1016/j.mejo.2008.02.020
[8]
Toh E H, Wang G H, Chan L, et al. Device physics and guiding principles for the design of double-gate tunne ling field effect transistor with silicon-germanium source heterojunction. Appl Phys Lett, 2007, 91:243505 doi: 10.1063/1.2823606
[9]
Shih C, Chien N D. Sub-10-nm tunnel field-effect transistor with graded Si/Ge heterojunction. IEEE Electron Device Lett, 2011, 32:1498 doi: 10.1109/LED.2011.2164512
[10]
Riel H, Moselund K E, Bessire C, et al. InAs-Si heterojunction nanowire tunnel diodes and tunnel FETs. IEEE Int Electron Devices Meeting, 2012:16 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&tp=&arnumber=6479056&searchWithin%3Dp_Authors%3A.QT.Schenk%2C+%2FA%2F..QT.
[11]
Moselund K E, Schmid H, Bessire C, et al. InAs-Si nanowire heterojunction tunnel FETs. IEEE Electron Device Lett, 2012, 33:1453 doi: 10.1109/LED.2012.2206789
[12]
Li R, Lu Y, Zhou G, et al. AlGaSb/InAs tunnel field-effect transistor with on-current of 78μA/μm at 0.5 V. IEEE Electron Device Lett, 2012, 33:363 doi: 10.1109/LED.2011.2179915
[13]
Schenk A, Rhyner R, Luisier M, et al. Analysis of Si, InAs, and Si-InAs tunnel diodes and tunnel FETs using different transport models.Int Conf Simul Semicond Process Devices, 2011:263. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6035075
[14]
Bhuwalka K K, Sedlmaier S, Ludsteck A K, et al. Vertical tunnel field-effect transistor. IEEE Trans Electron Devices, 2004, 51:279 doi: 10.1109/TED.2003.821575
[15]
Chen J, Klaumnzer S, Lux-Steiner M C, et al. Vertical nanowire transistors with low leakage current. Appl Phys Lett, 2004, 85:1401 doi: 10.1063/1.1784037
[16]
Mookerjea S, Mohata D, Mayer T, et al. Temperature-dependent I-V characteristics of a vertical In0.53Ga0.47As tunnel FET. IEEE Electron Device Lett, 2010, 31:564 doi: 10.1109/LED.2010.2045631
[17]
Bhuwalka K K, Schulze J, Eisele I. Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer. Jpn J Appl Phys, 2004, 43:4073 doi: 10.1143/JJAP.43.4073
[18]
Bhuwalka K K, Schulze J, Eisele I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans Electron Devices, 2005, 52:909 doi: 10.1109/TED.2005.846318
[19]
Bal P, Akram M W, Mondal P, et al. Performance estimation of sub-30 nm junctionless tunnel FET (JLTFET). J Comput Electron, 2013, 12:782 doi: 10.1007/s10825-013-0483-6
[20]
Ghosh B, Akram M W. Junctionless tunnel field effect transistor. IEEE Electron Device Lett, 2013, 34:584 doi: 10.1109/LED.2013.2253752
[21]
Mondal P, Ghosh B, Bal P. Planar junctionless transistor with non-uniform channel doping. Appl Phys Lett, 2013, 102:133505 doi: 10.1063/1.4801443
[22]
Bal P, Ghosh B, Mondal P, et al. Dual material gate junctionless tunnel field effect transistor. J Comput Electron, 2014, 13:230 doi: 10.1007/s10825-013-0505-4
[23]
Assaderaghi F, Sinitsky D, Parke S A, et al. Dynamic threshold-voltage MOSFET (DTMOS) for ultra-low voltage VLSI. IEEE Trans Electron Devices, 1997, 44:414 doi: 10.1109/16.556151
[24]
He J, Chan M. Numerical study on nanowire tunnel FET with dynamic threshold operation architecture. IEEE Int Conf Electron Devices Solid-State Circuits, 2013:1 http://ieeexplore.ieee.org/document/6628211/
[25]
Vandooren A, Leonelli D, Rooyackers R, et al. Trap-assisted tunneling in vertical Si and SiGe hetero-tunnel-FETs. IEEE Int Silicon-Germanium Technol Device Meeting, 2012:1 http://www.sciencedirect.com/science/article/pii/S0038110113000397
[26]
SILVACO, ATLAS User's Manual, 2011
[27]
Schenk A. A model for the field and temperature dependence of Shockley-Read-Hall lifetimes in silicon. Solid-State Electron, 1992, 35:1585 doi: 10.1016/0038-1101(92)90184-E
[28]
Crowell C R, Rideout V L. Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid-State Electron, 1969, 12:89 doi: 10.1016/0038-1101(69)90117-8
[29]
Murphy E L, Good R H. Thermionic emission, field emission, and the transition region. Phys Rev, 1956, 102:1464 doi: 10.1103/PhysRev.102.1464
[30]
Crowell C R, Sze S M. Current transport in metal-semiconductor barriers. Solid-State Electron, 1966, 9:1035 doi: 10.1016/0038-1101(66)90127-4
[31]
Mookerjea S, Krishnan R, Datta S, et al. Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans Electron Devices, 2009, 56:2092 doi: 10.1109/TED.2009.2026516
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2268 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 03 February 2014 Revised: 16 May 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Shibir Basak, Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh. Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor[J]. Journal of Semiconductors, 2014, 35(11): 114001. doi: 10.1088/1674-4926/35/11/114001 S Basak, P K Asthana, Y Goswami, B Ghosh. Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor[J]. J. Semicond., 2014, 35(11): 114001. doi:  10.1088/1674-4926/35/11/114001.Export: BibTex EndNote
      Citation:
      Shibir Basak, Pranav Kumar Asthana, Yogesh Goswami, Bahniman Ghosh. Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor[J]. Journal of Semiconductors, 2014, 35(11): 114001. doi: 10.1088/1674-4926/35/11/114001

      S Basak, P K Asthana, Y Goswami, B Ghosh. Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor[J]. J. Semicond., 2014, 35(11): 114001. doi:  10.1088/1674-4926/35/11/114001.
      Export: BibTex EndNote

      Dynamic threshold voltage operation in Si and SiGe source junctionless tunnel field effect transistor

      doi: 10.1088/1674-4926/35/11/114001
      More Information

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return