SEMICONDUCTOR DEVICES

Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems

Jianyi Zhao1, 2, , Xin Chen1, Ning Zhou2, Xiaodong Huang2 and Wen Liu1, 3

+ Author Affiliations

 Corresponding author: Zhao Jianyi, Email:jianyi.zhao@accelink.com

PDF

Abstract: Four-channel monolithically integrated index-coupled distributed-feedback laser array has been fabricated using nanoimprint technology for 1.3 μm CWDM system. Selective lasing wavelength with 20 nm wavelength space is obtained. The present results show that the nanoimprint technology is mature and reliable in the fabrication of DFB laser array.

Key words: semiconductor lasernanoimprintdistributed feedback



[1]
Darja J, Chan M J, Sugiyama M, et al. Four channel DFB laser array with integrated combiner for 1.55μm CWDM systems by MOVPE selective area. IEICE Electorn Express, 2006, 3(2):522 http://ci.nii.ac.jp/naid/130000088313
[2]
Hou L P, Haji M, Akbar J, et al. AlGaInAs/InP monolithically integrated DFB laser array. IEEE J Quantum Electron, 2012, 48(2):137 doi: 10.1109/JQE.2011.2174455
[3]
Ma L, Zhu H L, Liang S, et al. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier. Chin Phys B, 2013, 22(5):054211 doi: 10.1088/1674-1056/22/5/054211
[4]
Shen D X, Gu W Y, Xu D X. Analysis of distributed phase shift in distributed feedback semiconductor lasers. Chin Phys Lett, 1999, 16(10):721 doi: 10.1088/0256-307X/16/10/007
[5]
Hatakeyama H, Kudo K, Yokoyama Y, et al. Wavelength-selectable microarray light sources for wide-band DWDM applications. IEEE J Sel Top Quantum Electron, 20028(6):1341 doi: 10.1109/JSTQE.2002.806717
[6]
Li G P, Makio T, Sarangan A, et al. 16-wavelength gain-coupled DFB laser array with fine tunability. IEEE Photonics Technol Lett, 1996, 8(1):22 doi: 10.1109/68.475765
[7]
Kudo K, Morimoto T, Yashiki K, et al. Wavelength-selectable microarray light sources of multiple ranges simultaneously fabricated on single wafer. Electron Lett, 2000, 36(8):745 doi: 10.1049/el:20000565
[8]
Li J, Wang H, Chen X, et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction equivalent chirp technology. Opt Express, 2009, 17(7):5240 doi: 10.1364/OE.17.005240
[9]
Li J S, Chen X F, Zhou N, et al. Monolithically integrated 30-wavelength DFB laser array. Proc SPIE, 2009, 7631:763104 doi: 10.1117/12.852019
[10]
Wang C L, Wu J, Lin J T. Single mode rate equations for two sections self-pulsating DFB laser. Chin Phys B, 2003, 12(5):528 doi: 10.1088/1009-1963/12/5/312
[11]
Xie H Y, Wang L, Zhao L J, et al. Optical microwave generation using two parallel DFB lasers integrated with Y-branch waveguide coupler. Chin Phys B, 2007, 16(5):1459 doi: 10.1088/1009-1963/16/5/048
[12]
Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett, 1995, 67(21):3114 doi: 10.1063/1.114851
[13]
Viheriala J, Viljanen M R, Kontio J, et al. Soft stamp ultraviolet nanoimprint lithography for fabrication of laser diodes. Proc SPIE, 2009, 7271:72711O doi: 10.1117/12.814122
[14]
Xia Q, Keimel C, Ge H, et al. Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography. Appl Phys Lett, 2003, 83(21):4117 doi: 10.1063/1.1630162
[15]
Chang A S P, Tan H, Bai S, et al. Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror. IEEE Photonics Technol Lett, 2007, 19(14):1099 doi: 10.1109/LPT.2007.899437
[16]
Peng J, Xu Z M, Wu X F, et al. A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography. Acta Phys Sin, 2013, 62(3):036104 http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201303037.htm
[17]
Akiba S, Usami M, Utaka K. 1.5-μm λ/4-shifted InGaAsP/InP DFB lasers. IEEE J Lightwave Technol, 1987, 5(11):1564 doi: 10.1109/JLT.1987.1075453
[18]
Coldren L A, Corzine S W. Diode lasers and photonic integrated circuits. New York: John Wiley, 1995
[19]
Ghafouri Shiraz H. Distributed feedback laser diodes and optical tunable filters. New York: John Wiley, 2003
[20]
Yee H H, Hsu H T, Chang J Y, et al. New self-consistent method for determining the coupling coefficient and the grating losses of DBR lasers using MATLAB. Proc SPIE, 2001, 4216:103 doi: 10.1117/12.414104
[21]
Hou J, Chen X F, Wang L X, et al. A method of adjusting wavelengths of distributed feedback laser arrays by injection current tuning. IEEE Photonics J, 2012, 4(6):2189 doi: 10.1109/JPHOT.2012.2228183
Fig. 1.  (Color online) The structure of the laser array.

Fig. 2.  (Color online) The fabrication process of the soft stamp.

Fig. 3.  (Color online) The fabrication process of gratings.

Fig. 4.  Temperature-pressure variations imprint process of (a) soft mode fabrication and (b) grating fabrication.

Fig. 5.  SEM photograph of the resist (a) after nanoimprint, (b) after etching the residual resist, (c) surface of the etched grating, and (d) cross profile of the etched grating.

Fig. 6.  SEM photograph of the grating fabricated by (a) double beam interference exposure and (b) nanoimprint.

Fig. 7.  $P$-$I$ curves of (a) the four channel laser array and (b) calculated gain spectrum, normalized coupling coefficient, measured AR-coating reflectivity and coupling coefficient.

Fig. 8.  (a) Optical spectrum of the four channel laser array and (b) wavelength distribution of 25 arrays.

Fig. 10.  Photograph of the chip (a) after welding, (b) after wire bonding, and (c) thermal tuning curves of the four lasers.

Fig. 9.  Experiment system.

Fig. 11.  Thermal tuning and crosstalk of the four lasers from LD1 to LD4.

Table 1.   Laser cross-sectional structures.

[1]
Darja J, Chan M J, Sugiyama M, et al. Four channel DFB laser array with integrated combiner for 1.55μm CWDM systems by MOVPE selective area. IEICE Electorn Express, 2006, 3(2):522 http://ci.nii.ac.jp/naid/130000088313
[2]
Hou L P, Haji M, Akbar J, et al. AlGaInAs/InP monolithically integrated DFB laser array. IEEE J Quantum Electron, 2012, 48(2):137 doi: 10.1109/JQE.2011.2174455
[3]
Ma L, Zhu H L, Liang S, et al. Four distributed feedback laser array integrated with multimode-interference and semiconductor optical amplifier. Chin Phys B, 2013, 22(5):054211 doi: 10.1088/1674-1056/22/5/054211
[4]
Shen D X, Gu W Y, Xu D X. Analysis of distributed phase shift in distributed feedback semiconductor lasers. Chin Phys Lett, 1999, 16(10):721 doi: 10.1088/0256-307X/16/10/007
[5]
Hatakeyama H, Kudo K, Yokoyama Y, et al. Wavelength-selectable microarray light sources for wide-band DWDM applications. IEEE J Sel Top Quantum Electron, 20028(6):1341 doi: 10.1109/JSTQE.2002.806717
[6]
Li G P, Makio T, Sarangan A, et al. 16-wavelength gain-coupled DFB laser array with fine tunability. IEEE Photonics Technol Lett, 1996, 8(1):22 doi: 10.1109/68.475765
[7]
Kudo K, Morimoto T, Yashiki K, et al. Wavelength-selectable microarray light sources of multiple ranges simultaneously fabricated on single wafer. Electron Lett, 2000, 36(8):745 doi: 10.1049/el:20000565
[8]
Li J, Wang H, Chen X, et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction equivalent chirp technology. Opt Express, 2009, 17(7):5240 doi: 10.1364/OE.17.005240
[9]
Li J S, Chen X F, Zhou N, et al. Monolithically integrated 30-wavelength DFB laser array. Proc SPIE, 2009, 7631:763104 doi: 10.1117/12.852019
[10]
Wang C L, Wu J, Lin J T. Single mode rate equations for two sections self-pulsating DFB laser. Chin Phys B, 2003, 12(5):528 doi: 10.1088/1009-1963/12/5/312
[11]
Xie H Y, Wang L, Zhao L J, et al. Optical microwave generation using two parallel DFB lasers integrated with Y-branch waveguide coupler. Chin Phys B, 2007, 16(5):1459 doi: 10.1088/1009-1963/16/5/048
[12]
Chou S Y, Krauss P R, Renstrom P J. Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett, 1995, 67(21):3114 doi: 10.1063/1.114851
[13]
Viheriala J, Viljanen M R, Kontio J, et al. Soft stamp ultraviolet nanoimprint lithography for fabrication of laser diodes. Proc SPIE, 2009, 7271:72711O doi: 10.1117/12.814122
[14]
Xia Q, Keimel C, Ge H, et al. Ultrafast patterning of nanostructures in polymers using laser assisted nanoimprint lithography. Appl Phys Lett, 2003, 83(21):4117 doi: 10.1063/1.1630162
[15]
Chang A S P, Tan H, Bai S, et al. Tunable external cavity laser with a liquid-crystal subwavelength resonant grating filter as wavelength-selective mirror. IEEE Photonics Technol Lett, 2007, 19(14):1099 doi: 10.1109/LPT.2007.899437
[16]
Peng J, Xu Z M, Wu X F, et al. A study of LED with surface photonic crystal structure fabricated by the nanoimprint lithography. Acta Phys Sin, 2013, 62(3):036104 http://en.cnki.com.cn/Article_en/CJFDTotal-WLXB201303037.htm
[17]
Akiba S, Usami M, Utaka K. 1.5-μm λ/4-shifted InGaAsP/InP DFB lasers. IEEE J Lightwave Technol, 1987, 5(11):1564 doi: 10.1109/JLT.1987.1075453
[18]
Coldren L A, Corzine S W. Diode lasers and photonic integrated circuits. New York: John Wiley, 1995
[19]
Ghafouri Shiraz H. Distributed feedback laser diodes and optical tunable filters. New York: John Wiley, 2003
[20]
Yee H H, Hsu H T, Chang J Y, et al. New self-consistent method for determining the coupling coefficient and the grating losses of DBR lasers using MATLAB. Proc SPIE, 2001, 4216:103 doi: 10.1117/12.414104
[21]
Hou J, Chen X F, Wang L X, et al. A method of adjusting wavelengths of distributed feedback laser arrays by injection current tuning. IEEE Photonics J, 2012, 4(6):2189 doi: 10.1109/JPHOT.2012.2228183
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3541 Times PDF downloads: 31 Times Cited by: 0 Times

    History

    Received: 23 March 2014 Revised: 12 April 2014 Online: Published: 01 November 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jianyi Zhao, Xin Chen, Ning Zhou, Xiaodong Huang, Wen Liu. Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems[J]. Journal of Semiconductors, 2014, 35(11): 114008. doi: 10.1088/1674-4926/35/11/114008 J Y Zhao, X Chen, N Zhou, X D Huang, W Liu. Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems[J]. J. Semicond., 2014, 35(11): 114008. doi: 10.1088/1674-4926/35/11/114008.Export: BibTex EndNote
      Citation:
      Jianyi Zhao, Xin Chen, Ning Zhou, Xiaodong Huang, Wen Liu. Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems[J]. Journal of Semiconductors, 2014, 35(11): 114008. doi: 10.1088/1674-4926/35/11/114008

      J Y Zhao, X Chen, N Zhou, X D Huang, W Liu. Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems[J]. J. Semicond., 2014, 35(11): 114008. doi: 10.1088/1674-4926/35/11/114008.
      Export: BibTex EndNote

      Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems

      doi: 10.1088/1674-4926/35/11/114008
      Funds:

      the National High Technology Research and Development Program of China 2011AA010304

      Project supported by the State Key Development Program for Basic Research of China (No. 2010CB327603) and the National High Technology Research and Development Program of China (No. 2011AA010304)

      the State Key Development Program for Basic Research of China 2010CB327603

      More Information
      • Corresponding author: Zhao Jianyi, Email:jianyi.zhao@accelink.com
      • Received Date: 2014-03-23
      • Revised Date: 2014-04-12
      • Published Date: 2014-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return