SEMICONDUCTOR INTEGRATED CIRCUITS

Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure

Zhiqun Cheng, Minshi Jia, Ya Luan and Xinxiang Lian

+ Author Affiliations

 Corresponding author: Cheng Zhiqun, Email:zhiqun@hdu.edu.cn

PDF

Abstract: The design and fabrication of an ultra-broadband power amplifier based on a GaN HEMT, which operates in the frequency range from 3 to 8 GHz, is presented in this paper. A TGF2023-02 GaN HEMT chip from TriQuint is adopted and modeled. A novel negative feedback structure is applied in the circuit. The measured results show that the amplifier module has a wide range frequency response that is almost consistent with those of simulation at frequencies from 3 to 6.5 GHz. The measured power gain is greater than 7 dB between 3 and 6.5 GHz. The saturated output power is 38.5 dBm under DC bias of Vds=28 V, Vgs=-3.5 V at the frequency of 5.5 GHz.

Key words: GaN HEMTmodelingpower amplifierwidebandnegative feedback



[1]
Sim J, Lim J, Park M, et al. Analysis and design of wide-band power amplifier using GaN. Microwave Conference, 2009:2352 http://ieeexplore.ieee.org/document/5385457/
[2]
Pribble W L, Palmour J W, Sheppard S T, et al. Application of SiC MESFETs and GaN HEMTs in power amplifier design. IEEE MTT'S International, 2002, 3:1819 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1012216
[3]
Xue H X, Kenington P B, Beach M A. A high performance ultra-broadband RF choke microwave applications. IEEE Colloquium on Evolving Technologies for Small Earth Station Hardware, 1995
[4]
Ayasli Y, Reynolds L D, Vorhaus J L, et al. Monolithic 2-20 GHz GaAs travelling-wave amplifier. Electron Lett, 1982, 18(14):596 doi: 10.1049/el:19820409
[5]
Kuwata E, Yamanaka K, Kirikoshi T, et al. C-Ku band 120% relative bandwidth high efficiency high power amplifier using GaN HEMT. Microwave Conference, 2009:1663 http://ieeexplore.ieee.org/document/5384324/
[6]
Xu J J, Wu Y F, Keller S, et al. 1-8-GHz GaN-based power amplifier using flip-chip bonding. IEEE Microw Guided Wave Lett, 1999, 9(7):277 doi: 10.1109/75.774146
[7]
Santhakumar R, Thibeault B, Member S, et al. Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs. IEEE Trans Microw Theory Tech, 2011, 59(8):2059 doi: 10.1109/TMTT.2011.2144996
[8]
Lin Xigui, Hao Yue, Feng Qian, et al. Design of power amplifier based on AlGaN/GaN HEMT. Chinese Journal of Semiconductors, 2006, 31(1):52(in Chinese)
[9]
Yu Xuming, Zhang Bin, Chen Tangsheng, et al. 6-18 GHz broadband GaN power amplifier MMIC. Research & Progress of Solid-State Electronics, 2011, 31(2):111(in Chinese) http://ieeexplore.ieee.org/document/7167127/
[10]
Liu D, Wang L, Chen X J. Microwave and Millimeter Wave Circuits and SystemTechnology, International workshop, 2012, 1
[11]
[12]
Chen Chi, Hao Yue, Yang Ling, et al. Nonlinear characterization of GaN HEMT. J Semicond, 2010, 31(11):114004 doi: 10.1088/1674-4926/31/11/114004
[13]
Cheng Z Q, Jin L W, Shi W. Design of broadband GaN HEMT power amplifier with Ku band. Appl Mechan Mater, 2012, 263-266:39 doi: 10.4028/www.scientific.net/AMM.263-266
Fig. 1.  Simulated and measured $S$ parameters

Fig. 2.  Simulated and measured $P_{\rm sat}$ and PAE.

Fig. 3.  Model of bonding wire.

Fig. 4.  Simulation of bonding wire.

Fig. 5.  Schematic diagram of the proposed power amplifier.

Fig. 6.  The measured result of the power manager.

Fig. 7.  Pictures of power amplifier module.

Fig. 8.  Simulated and measured $S$ parameters of the circuit.

Fig. 9.  Simulated $P_{\rm out}$ and gain versus input power of the circuit.

[1]
Sim J, Lim J, Park M, et al. Analysis and design of wide-band power amplifier using GaN. Microwave Conference, 2009:2352 http://ieeexplore.ieee.org/document/5385457/
[2]
Pribble W L, Palmour J W, Sheppard S T, et al. Application of SiC MESFETs and GaN HEMTs in power amplifier design. IEEE MTT'S International, 2002, 3:1819 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1012216
[3]
Xue H X, Kenington P B, Beach M A. A high performance ultra-broadband RF choke microwave applications. IEEE Colloquium on Evolving Technologies for Small Earth Station Hardware, 1995
[4]
Ayasli Y, Reynolds L D, Vorhaus J L, et al. Monolithic 2-20 GHz GaAs travelling-wave amplifier. Electron Lett, 1982, 18(14):596 doi: 10.1049/el:19820409
[5]
Kuwata E, Yamanaka K, Kirikoshi T, et al. C-Ku band 120% relative bandwidth high efficiency high power amplifier using GaN HEMT. Microwave Conference, 2009:1663 http://ieeexplore.ieee.org/document/5384324/
[6]
Xu J J, Wu Y F, Keller S, et al. 1-8-GHz GaN-based power amplifier using flip-chip bonding. IEEE Microw Guided Wave Lett, 1999, 9(7):277 doi: 10.1109/75.774146
[7]
Santhakumar R, Thibeault B, Member S, et al. Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs. IEEE Trans Microw Theory Tech, 2011, 59(8):2059 doi: 10.1109/TMTT.2011.2144996
[8]
Lin Xigui, Hao Yue, Feng Qian, et al. Design of power amplifier based on AlGaN/GaN HEMT. Chinese Journal of Semiconductors, 2006, 31(1):52(in Chinese)
[9]
Yu Xuming, Zhang Bin, Chen Tangsheng, et al. 6-18 GHz broadband GaN power amplifier MMIC. Research & Progress of Solid-State Electronics, 2011, 31(2):111(in Chinese) http://ieeexplore.ieee.org/document/7167127/
[10]
Liu D, Wang L, Chen X J. Microwave and Millimeter Wave Circuits and SystemTechnology, International workshop, 2012, 1
[11]
[12]
Chen Chi, Hao Yue, Yang Ling, et al. Nonlinear characterization of GaN HEMT. J Semicond, 2010, 31(11):114004 doi: 10.1088/1674-4926/31/11/114004
[13]
Cheng Z Q, Jin L W, Shi W. Design of broadband GaN HEMT power amplifier with Ku band. Appl Mechan Mater, 2012, 263-266:39 doi: 10.4028/www.scientific.net/AMM.263-266
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3147 Times PDF downloads: 19 Times Cited by: 0 Times

    History

    Received: 27 May 2014 Revised: 03 July 2014 Online: Published: 01 December 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Zhiqun Cheng, Minshi Jia, Ya Luan, Xinxiang Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure[J]. Journal of Semiconductors, 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005 Z Q Cheng, M S Jia, Y Luan, X X Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure[J]. J. Semicond., 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005.Export: BibTex EndNote
      Citation:
      Zhiqun Cheng, Minshi Jia, Ya Luan, Xinxiang Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure[J]. Journal of Semiconductors, 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005

      Z Q Cheng, M S Jia, Y Luan, X X Lian. Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure[J]. J. Semicond., 2014, 35(12): 125005. doi: 10.1088/1674-4926/35/12/125005.
      Export: BibTex EndNote

      Solid-state wideband GaN HEMT power amplifier with a novel negative feedback structure

      doi: 10.1088/1674-4926/35/12/125005
      Funds:

      the Natural Science Foundation of Zhejiang Province Z1110937

      Project supported by the Natural Science Foundation of Zhejiang Province (No. Z1110937)

      More Information
      • Corresponding author: Cheng Zhiqun, Email:zhiqun@hdu.edu.cn
      • Received Date: 2014-05-27
      • Revised Date: 2014-07-03
      • Published Date: 2014-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return