SEMICONDUCTOR DEVICES

Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors

Qiaozhi Zhu and Dejun Wang

+ Author Affiliations

 Corresponding author: Wang Dejun, dwang121@dlut.edu.cn

PDF

Abstract: The effects of wet re-oxidation annealing (wet-ROA) on the shallow interface traps of n-type 4H-SiC metal-oxide-semiconductor (MOS) capacitors were investigated by Gray-Brown method and angle-dependent X-ray photoelectron spectroscopy technique. The results present the energy distribution of the density of interface traps ($D_{\rm it})$ from 0 to 0.2 eV below SiC conduction band edge ($E_{\rm C})$ of the sample with wet-ROA for the first time, and indicate that wet-ROA could reduce the $D_{\rm it}$ in this energy range by more than 60%. The reduction in $D_{\rm it}$ is attributed to the reaction between the introduced oxygen and the SiO$_{x}$C$_{y}$ species, which results in C release and SiO$_{x}$C$_{y}$ transformation into higher oxidation states, thus reducing the SiO$_{x}$C$_{y}$ content and the SiO$_{x}$C$_{y}$ interface transition region thickness.

Key words: SiCMOSshallow interface trapswet-ROAinterface transition region



[1]
Palmour J W, Edmond J A, Kong H S, et al. 6H-silicon carbide devices and applications. Physica B, 1993, 185:461 doi: 10.1016/0921-4526(93)90278-E
[2]
Cooper J A Jr. Advances in SiC technology. Phys Status Solidi A, 1997, 162:305 doi: 10.1002/(ISSN)1521-396X
[3]
Yano H, Hirao T, Kimoto T, et al. A cause for highly improved channel mobility of 4H-SiC metal-oxide-semiconductor field-effect transistors on the (1120) face. Appl Phys Lett, 2001, 78(3):374 doi: 10.1063/1.1340861
[4]
Chen Z. Recent progress in SiC power electronic devices and fabrication process. Chinese Journal of Semiconductors, 2002, 23(7):673(in Chinese) http://adsabs.harvard.edu/abs/1997PSSBR.202..605Y
[5]
Schörner R, Friedrichs P, Peters D, et al. Significantly improved performance of MOSFET's on silicon carbide using the 15R-SiC polytype. IEEE Electron Device Lett, 1999, 20(5):241 doi: 10.1109/55.761027
[6]
Afanas'ev V V, Bassler M, Pensl G, et al. Intrinsic SiC/SiO2 interface states. Phys Status Solidi A, 1997, 162:321 doi: 10.1002/(ISSN)1521-396X
[7]
Das M K, Um B S, Cooper J A Jr. Anomalously high density of interface states near the conduction band in SiO2/4H-SiC MOS devices. Mater Sci Forum, 2000, 338-342:1069 doi: 10.4028/www.scientific.net/MSF.338-342
[8]
Saks N S, Mani S S, Agarwal A K. Interface trap profile near the band edges at the 4H-SiC/SiO2 interface. Appl Phys Lett, 2000, 76(16):2250 doi: 10.1063/1.126311
[9]
Pensl G, Beljakowa S, Frank T, et al. Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors. Phys Status Solidi B, 2008, 245(7):1378 doi: 10.1002/pssb.v245:7
[10]
Hornetz B, Michel H J, Halbritter J. Oxidation and 6H-SiC-SiO2 interface. J Vac Sci Technol A, 1995, 13(3):767 doi: 10.1116/1.579824
[11]
Zhu Q, Huang L, Li W, et al. Chemical structure study of SiO2/4H-SiC (0001) interface transition region by angle-dependent X-ray photoelectron spectroscopy. Appl Phys Lett, 2011, 99:082102 doi: 10.1063/1.3628322
[12]
Wang D, Zhao L, Zhu Q, et al. A transition region study of SiO2/4H-SiC interface by ADXPS. Journal of Semiconductors, 2008, 29(5):944(in Chinese) https://infoscience.epfl.ch/record/141739
[13]
Lipkin L A, Palmour J W. Improved oxidation procedures for reduced SiO2/SiC defects. J Electron Mater, 1996, 25(5):909 doi: 10.1007/BF02666657
[14]
Suzuki S, Harada S, Kosugi R, et al. Correlation between channel mobility and shallow interface traps in SiC metal-oxide-semiconductor field-effect transistors. J Appl Phys, 2002, 92(10):6230 doi: 10.1063/1.1513210
[15]
Gray P V, Brown D M. Density of SiO2-Si interface states. Appl Phys Lett, 1966, 8(2):31 doi: 10.1063/1.1754468
[16]
Taoka N, Mizubayashi W, Morita Y, et al. Effect of Ge metal-insulator-semiconductor interfacial layers on interface trap density near the conduction band edge. Jpn J Appl Phys, 2010, 49:04DA09 http://adsabs.harvard.edu/abs/1998SSEle..42..477C
[17]
Dhar S, Chen X D, Mooney P M, et al. Ultrashallow defect states at SiO2/4H-SiC interfaces. Appl Phys Lett, 2008, 92:102112 doi: 10.1063/1.2898502
[18]
Zhu X, Ahyi A C, Li M, et al. The effects of nitrogen plasma anneals on interface trap density and channel mobility for 4H-SiC MOS devices. Solid-State Electron, 2011, 57:76 doi: 10.1016/j.sse.2010.12.002
[19]
Zhu Q, Qin F, Li W, et al. Improvement of SiO2/4H-SiC interface properties by electron cyclotron resonance microwave nitrogen-hydrogen mixed plasma post-oxidation annealing. Appl Phys Lett, 2013, 103:062105 doi: 10.1063/1.4818141
[20]
Sze S M. Physics of semiconductor devices. New York: Wiley, 1991
[21]
Önneby C, Pantano C G. Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface. J Vac Sci Technol A, 1997, 15(3):1597 doi: 10.1116/1.580951
[22]
Hill J M, Royce D G, Fadley C S, et al. Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy. Chem Phys Lett, 1976, 44(2):225 doi: 10.1016/0009-2614(76)80496-4
[23]
Fulghum J E. Determination of overlayer thickness by angle-resolved XPS:a comparison of algorithms. Surf Interface Anal, 1993, 20:161 doi: 10.1002/(ISSN)1096-9918
[24]
Tanuma S, Powell C J, Penn D R. Calculations of electron inelastic mean free paths. Surf Interface Anal, 1991, 17:927 doi: 10.1002/(ISSN)1096-9918
[25]
Beccat P, Silva P D, Huiban Y, et al. Quantitative surface analysis by XPS:application to hydrotreating catalysts. Oil & Gas Sci Tech-Rev. IFP, 1999, 54(4):487 https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/1999/04/beccat_v54n4.pdf
Fig. 1.  Temperature-dependent $C$-$V$ curves of samples (a) #A and (b) #B.

Fig. 2.  The energy band schematic of n-type SiC at different temperatures.

Fig. 3.  The energy distributions of $D_{\rm it}$ above $E_{\rm C}$ -0.2 eV of samples #A and #B.

Fig. 4.  Si 2p spectra at $\theta$ $=$ 45$^\circ$ of samples (a) #A1 and (b) #B1.

Table 1.   The atomic percentages of Si, O, and C and the atomic ratio of O/Si and C/Si of samples #A1 and #B1.

[1]
Palmour J W, Edmond J A, Kong H S, et al. 6H-silicon carbide devices and applications. Physica B, 1993, 185:461 doi: 10.1016/0921-4526(93)90278-E
[2]
Cooper J A Jr. Advances in SiC technology. Phys Status Solidi A, 1997, 162:305 doi: 10.1002/(ISSN)1521-396X
[3]
Yano H, Hirao T, Kimoto T, et al. A cause for highly improved channel mobility of 4H-SiC metal-oxide-semiconductor field-effect transistors on the (1120) face. Appl Phys Lett, 2001, 78(3):374 doi: 10.1063/1.1340861
[4]
Chen Z. Recent progress in SiC power electronic devices and fabrication process. Chinese Journal of Semiconductors, 2002, 23(7):673(in Chinese) http://adsabs.harvard.edu/abs/1997PSSBR.202..605Y
[5]
Schörner R, Friedrichs P, Peters D, et al. Significantly improved performance of MOSFET's on silicon carbide using the 15R-SiC polytype. IEEE Electron Device Lett, 1999, 20(5):241 doi: 10.1109/55.761027
[6]
Afanas'ev V V, Bassler M, Pensl G, et al. Intrinsic SiC/SiO2 interface states. Phys Status Solidi A, 1997, 162:321 doi: 10.1002/(ISSN)1521-396X
[7]
Das M K, Um B S, Cooper J A Jr. Anomalously high density of interface states near the conduction band in SiO2/4H-SiC MOS devices. Mater Sci Forum, 2000, 338-342:1069 doi: 10.4028/www.scientific.net/MSF.338-342
[8]
Saks N S, Mani S S, Agarwal A K. Interface trap profile near the band edges at the 4H-SiC/SiO2 interface. Appl Phys Lett, 2000, 76(16):2250 doi: 10.1063/1.126311
[9]
Pensl G, Beljakowa S, Frank T, et al. Alternative techniques to reduce interface traps in n-type 4H-SiC MOS capacitors. Phys Status Solidi B, 2008, 245(7):1378 doi: 10.1002/pssb.v245:7
[10]
Hornetz B, Michel H J, Halbritter J. Oxidation and 6H-SiC-SiO2 interface. J Vac Sci Technol A, 1995, 13(3):767 doi: 10.1116/1.579824
[11]
Zhu Q, Huang L, Li W, et al. Chemical structure study of SiO2/4H-SiC (0001) interface transition region by angle-dependent X-ray photoelectron spectroscopy. Appl Phys Lett, 2011, 99:082102 doi: 10.1063/1.3628322
[12]
Wang D, Zhao L, Zhu Q, et al. A transition region study of SiO2/4H-SiC interface by ADXPS. Journal of Semiconductors, 2008, 29(5):944(in Chinese) https://infoscience.epfl.ch/record/141739
[13]
Lipkin L A, Palmour J W. Improved oxidation procedures for reduced SiO2/SiC defects. J Electron Mater, 1996, 25(5):909 doi: 10.1007/BF02666657
[14]
Suzuki S, Harada S, Kosugi R, et al. Correlation between channel mobility and shallow interface traps in SiC metal-oxide-semiconductor field-effect transistors. J Appl Phys, 2002, 92(10):6230 doi: 10.1063/1.1513210
[15]
Gray P V, Brown D M. Density of SiO2-Si interface states. Appl Phys Lett, 1966, 8(2):31 doi: 10.1063/1.1754468
[16]
Taoka N, Mizubayashi W, Morita Y, et al. Effect of Ge metal-insulator-semiconductor interfacial layers on interface trap density near the conduction band edge. Jpn J Appl Phys, 2010, 49:04DA09 http://adsabs.harvard.edu/abs/1998SSEle..42..477C
[17]
Dhar S, Chen X D, Mooney P M, et al. Ultrashallow defect states at SiO2/4H-SiC interfaces. Appl Phys Lett, 2008, 92:102112 doi: 10.1063/1.2898502
[18]
Zhu X, Ahyi A C, Li M, et al. The effects of nitrogen plasma anneals on interface trap density and channel mobility for 4H-SiC MOS devices. Solid-State Electron, 2011, 57:76 doi: 10.1016/j.sse.2010.12.002
[19]
Zhu Q, Qin F, Li W, et al. Improvement of SiO2/4H-SiC interface properties by electron cyclotron resonance microwave nitrogen-hydrogen mixed plasma post-oxidation annealing. Appl Phys Lett, 2013, 103:062105 doi: 10.1063/1.4818141
[20]
Sze S M. Physics of semiconductor devices. New York: Wiley, 1991
[21]
Önneby C, Pantano C G. Silicon oxycarbide formation on SiC surfaces and at the SiC/SiO2 interface. J Vac Sci Technol A, 1997, 15(3):1597 doi: 10.1116/1.580951
[22]
Hill J M, Royce D G, Fadley C S, et al. Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy. Chem Phys Lett, 1976, 44(2):225 doi: 10.1016/0009-2614(76)80496-4
[23]
Fulghum J E. Determination of overlayer thickness by angle-resolved XPS:a comparison of algorithms. Surf Interface Anal, 1993, 20:161 doi: 10.1002/(ISSN)1096-9918
[24]
Tanuma S, Powell C J, Penn D R. Calculations of electron inelastic mean free paths. Surf Interface Anal, 1991, 17:927 doi: 10.1002/(ISSN)1096-9918
[25]
Beccat P, Silva P D, Huiban Y, et al. Quantitative surface analysis by XPS:application to hydrotreating catalysts. Oil & Gas Sci Tech-Rev. IFP, 1999, 54(4):487 https://ogst.ifpenergiesnouvelles.fr/articles/ogst/pdf/1999/04/beccat_v54n4.pdf
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2135 Times PDF downloads: 11 Times Cited by: 0 Times

    History

    Received: 10 July 2013 Revised: 21 August 2013 Online: Published: 01 February 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qiaozhi Zhu, Dejun Wang. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors[J]. Journal of Semiconductors, 2014, 35(2): 024002. doi: 10.1088/1674-4926/35/2/024002 Q Z Zhu, D J Wang. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors[J]. J. Semicond., 2014, 35(2): 024002. doi: 10.1088/1674-4926/35/2/024002.Export: BibTex EndNote
      Citation:
      Qiaozhi Zhu, Dejun Wang. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors[J]. Journal of Semiconductors, 2014, 35(2): 024002. doi: 10.1088/1674-4926/35/2/024002

      Q Z Zhu, D J Wang. Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors[J]. J. Semicond., 2014, 35(2): 024002. doi: 10.1088/1674-4926/35/2/024002.
      Export: BibTex EndNote

      Effects of wet-ROA on shallow interface traps of n-type 4H-SiC MOS capacitors

      doi: 10.1088/1674-4926/35/2/024002
      Funds:

      Project supported by the Fundamental Research Funds for the Central Universities, Ministry of Education, China (No. DUT11ZD114)

      the Fundamental Research Funds for the Central Universities, Ministry of Education, China DUT11ZD114

      More Information
      • Corresponding author: Wang Dejun, dwang121@dlut.edu.cn
      • Received Date: 2013-07-10
      • Revised Date: 2013-08-21
      • Published Date: 2014-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return