SEMICONDUCTOR DEVICES

1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides

Fei Guo, Dan Lu, Ruikang Zhang, Baojun Wang, Xilin Zhang and Chen Ji

+ Author Affiliations

PDF

Abstract: A 1.3-μm 1×4 MMI coupler is designed and fabricated on an InP substrate based on a shallow etched waveguide structure. Tapered input/output waveguides and a bending waveguide design are adopted and applied in the device to optimize the performance. The average excess losses of the 1×4 MMI coupler per channel are 2.8, 1.7, 2.9, and 2.9 dB, respectively. The smallest excess loss can be lower than 0.5 dB in the 40-nm spectrum bandwidth. The average uniformity between the four channels of the MMI coupler is 1.3 dB, while the smallest uniformity is only 0.4 dB.

Key words: MMIshallow etched waveguidebeam propagation method



[1]
Besse P A, Bachmann M, Melchior H, et al. Optical bandwidth and fabrication tolerances of multimode interference couplers. J Lightwave Technol, 1994, 12(6):1004 doi: 10.1109/50.296191
[2]
Thaniyavarn S, Findakly T, Booher D, et al. Domain inversion effects in Ti-LiNbO3 integrated optical devices. Proc SPIE, 1985:559 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-17-10739#figanchor2
[3]
Saida T, Himeno A, Okuno M, et al. Silica-based 2×2 multimode interference coupler with arbitrary power splitting ratio. Electron Lett, 1999, 35(23):2031 doi: 10.1049/el:19991363
[4]
Spiekman L H, Oei Y S, Metaal E G, et al. Extremely small multimode interference couplers and ultrashort bends on InP by deep etching. IEEE Photonics Technol Lett, 1994, 6(8):1008 doi: 10.1109/68.313078
[5]
Cole C, Huebner B, Johnson J E. Photonic integration for high volume, low cost applications. IEEE Commun Mag, 2009, 47(3):S16 doi: 10.1109/MCOM.2009.4804385
[6]
Anderson J, Traverso M. Optical transceivers for 100 Gigabit Ethernet and its transport. IEEE Commun Mag, 2010, 48(3):S35 doi: 10.1109/MCOM.2010.5434376
[7]
Kanazawa S, Fujisawa T, Ohki A. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver. IEEE J Sel Topics Quantum Electron, 2011, 17(5):1191 doi: 10.1109/JSTQE.2011.2124446
[8]
Fujisawa T, Kanazawa S, Takahata K. 1.3-μm, 4×25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter. Opt Express, 2012, 20(1):614 doi: 10.1364/OE.20.000614
[9]
Soldano L, Pennings E. Optical multimode interference devices based on self-imaging:principles and application. J Lightwave Technol, 1995, 13(4):615 doi: 10.1109/50.372474
[10]
Liang J J, Ballantyne J M. Self-aligned dry-etching process for waveguide diode ring lasers. J Vec Sci Technol B, 1994, 12(5):2929 doi: 10.1116/1.587538
[11]
Feuchter T, Thirstrup C. High precision planar waveguide propagation loss measurement technique using a Fabry-Pérot cavity. IEEE Photonics Technol Lett, 1994, 6(10):1244 doi: 10.1109/68.329652
[12]
Pennings E C M, van Roijen R, van Stralen M J N, et al. Reflection properties of multimode interference devices. IEEE Photonics Technol Lett, 1994, 6(6):715 doi: 10.1109/68.300172
[13]
Erasme D, Spiekman L H, Herben C G P, et al. Experimental assessment of the reflection of passive multimode interference couplers. IEEE Photonics Technol Lett, 1997, 9(12):1604 doi: 10.1109/68.643282
Fig. 1.  Schematic layout of a 1 $\times $ 4 MMI coupler.

Fig. 2.  Excess loss and uniformity as a function of MMI width.

Fig. 3.  Excess loss and uniformity with MMI etch depth.

Fig. 4.  Excess loss and uniformity with MMI etch depth.

Fig. 5.  MMI excess loss and uniformity comparison between the tapered waveguide and the straight waveguide.

Fig. 6.  MMI radiation loss variation as a function of bend radius. The inset shows radiation loss variation with offset.

Fig. 7.  SEM image of the dry etching sidewalls of the MMI.

Fig. 8.  Measured transmission spectrum of the straight waveguide.

Fig. 9.  The measurement of MMI insertion loss.

Fig. 10.  The measurement of MMI uniformity.

Fig. 11.  SEM image of the MMI structure.

[1]
Besse P A, Bachmann M, Melchior H, et al. Optical bandwidth and fabrication tolerances of multimode interference couplers. J Lightwave Technol, 1994, 12(6):1004 doi: 10.1109/50.296191
[2]
Thaniyavarn S, Findakly T, Booher D, et al. Domain inversion effects in Ti-LiNbO3 integrated optical devices. Proc SPIE, 1985:559 https://www.osapublishing.org/oe/abstract.cfm?uri=oe-15-17-10739#figanchor2
[3]
Saida T, Himeno A, Okuno M, et al. Silica-based 2×2 multimode interference coupler with arbitrary power splitting ratio. Electron Lett, 1999, 35(23):2031 doi: 10.1049/el:19991363
[4]
Spiekman L H, Oei Y S, Metaal E G, et al. Extremely small multimode interference couplers and ultrashort bends on InP by deep etching. IEEE Photonics Technol Lett, 1994, 6(8):1008 doi: 10.1109/68.313078
[5]
Cole C, Huebner B, Johnson J E. Photonic integration for high volume, low cost applications. IEEE Commun Mag, 2009, 47(3):S16 doi: 10.1109/MCOM.2009.4804385
[6]
Anderson J, Traverso M. Optical transceivers for 100 Gigabit Ethernet and its transport. IEEE Commun Mag, 2010, 48(3):S35 doi: 10.1109/MCOM.2010.5434376
[7]
Kanazawa S, Fujisawa T, Ohki A. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver. IEEE J Sel Topics Quantum Electron, 2011, 17(5):1191 doi: 10.1109/JSTQE.2011.2124446
[8]
Fujisawa T, Kanazawa S, Takahata K. 1.3-μm, 4×25-Gbit/s, EADFB laser array module with large-output-power and low-driving-voltage for energy-efficient 100GbE transmitter. Opt Express, 2012, 20(1):614 doi: 10.1364/OE.20.000614
[9]
Soldano L, Pennings E. Optical multimode interference devices based on self-imaging:principles and application. J Lightwave Technol, 1995, 13(4):615 doi: 10.1109/50.372474
[10]
Liang J J, Ballantyne J M. Self-aligned dry-etching process for waveguide diode ring lasers. J Vec Sci Technol B, 1994, 12(5):2929 doi: 10.1116/1.587538
[11]
Feuchter T, Thirstrup C. High precision planar waveguide propagation loss measurement technique using a Fabry-Pérot cavity. IEEE Photonics Technol Lett, 1994, 6(10):1244 doi: 10.1109/68.329652
[12]
Pennings E C M, van Roijen R, van Stralen M J N, et al. Reflection properties of multimode interference devices. IEEE Photonics Technol Lett, 1994, 6(6):715 doi: 10.1109/68.300172
[13]
Erasme D, Spiekman L H, Herben C G P, et al. Experimental assessment of the reflection of passive multimode interference couplers. IEEE Photonics Technol Lett, 1997, 9(12):1604 doi: 10.1109/68.643282
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2374 Times PDF downloads: 27 Times Cited by: 0 Times

    History

    Received: 10 August 2013 Revised: 28 August 2013 Online: Published: 01 February 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Fei Guo, Dan Lu, Ruikang Zhang, Baojun Wang, Xilin Zhang, Chen Ji. 1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides[J]. Journal of Semiconductors, 2014, 35(2): 024012. doi: 10.1088/1674-4926/35/2/024012 F Guo, D Lu, R K Zhang, B J Wang, X L Zhang, C Ji. 1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides[J]. J. Semicond., 2014, 35(2): 024012. doi: 10.1088/1674-4926/35/2/024012.Export: BibTex EndNote
      Citation:
      Fei Guo, Dan Lu, Ruikang Zhang, Baojun Wang, Xilin Zhang, Chen Ji. 1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides[J]. Journal of Semiconductors, 2014, 35(2): 024012. doi: 10.1088/1674-4926/35/2/024012

      F Guo, D Lu, R K Zhang, B J Wang, X L Zhang, C Ji. 1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides[J]. J. Semicond., 2014, 35(2): 024012. doi: 10.1088/1674-4926/35/2/024012.
      Export: BibTex EndNote

      1.3-μm 1×4 MMI coupler based on shallow-etched InP ridge waveguides

      doi: 10.1088/1674-4926/35/2/024012
      Funds:

      the National Natural Science Foundation of China 61201103

      the National Natural Science Foundation of China 61274046

      the National High Technology Research and Development Program of China 2013AA014202

      Project supported by the National Natural Science Foundation of China (Nos. 61274046, 61201103) and the National High Technology Research and Development Program of China (No. 2013AA014202)

      • Received Date: 2013-08-10
      • Revised Date: 2013-08-28
      • Published Date: 2014-02-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return