SEMICONDUCTOR DEVICES

Analytical modeling and simulation of germanium single gate silicon on insulator TFET

T. S. Arun Samuel and N. B. Balamurugan

+ Author Affiliations

 Corresponding author: T. S. Arun Samuel, Email:arunsamuel@tce.edu

PDF

Abstract: This paper proposes a new two dimensional (2D) analytical model for a germanium (Ge) single gate silicon-on-insulator tunnel field effect transistor (SG SOI TFET). The parabolic approximation technique is used to solve the 2D Poisson equation with suitable boundary conditions and analytical expressions are derived for the surface potential, the electric field along the channel and the vertical electric field. The device output tunnelling current is derived further by using the electric fields. The results show that Ge based TFETs have significant improvements in on-current characteristics. The effectiveness of the proposed model has been verified by comparing the analytical model results with the technology computer aided design (TCAD) simulation results and also comparing them with results from a silicon based TFET.

Key words: tunnel field effect transistor (TFET)analytical modellingPoisson equationsurface potentialelectric field



[1]
Zhang Q, Zhao W, Seabaugh A, et al. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett, 2006, 27(4):297 doi: 10.1109/LED.2006.871855
[2]
Appenzeller J, Lin Y M, Knoch J, et al. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett, 2004, 93(19):196 doi: 10.1103/PhysRevLett.93.196805
[3]
Toh E H, Wang G H, Chan L, et al. Device design and scalability of a double-gate tunnelling field-effect transistor with silicon-germanium source. Jpn J Appl Phys, 2008, 47(4):2593 doi: 10.1143/JJAP.47.2593
[4]
Kim S H, Kam H, Hu C, et al. Germanium-source tunnel field effect transistors with record high ION/IOFF. IEEE VLSI Symp on VLSI Technology, 2009:178
[5]
Boucart K, Ionescu A M. Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54(7):1725 doi: 10.1109/TED.2007.899389
[6]
Toh E H, Wang G H, Samudra G, et al. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Appl Phys Lett, 2007, 90(26):263 doi: 10.1063/1.2748366?journalCode=apl
[7]
Damrongplasit N, Shin C. Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans Electron Devices, 2011, 58(10):3541 doi: 10.1109/TED.2011.2161990
[8]
Nayfeh O M, Hoyt J L, Antoniads D A. Strained Si1-xGex/Si band-to-band tunneling transistors:impact of tunnel-junction germanium composition and doping concentration on switching behaviour. IEEE Trans Electron Devices, 2009, 56(10):2264 doi: 10.1109/TED.2009.2028055
[9]
Toh E H, Wang G H, Samudra G, et al. Device physics and design of germanium tunnelling field-effect transistor with source and drain engineering for low power and high performance applications. J Appl Phys, 2008, 103(10):104504 doi: 10.1063/1.2924413
[10]
Lee M J. Analytical model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid-State Electron, 2011, 63:110 doi: 10.1016/j.sse.2011.05.008
[11]
Kane. Zener tunneling in semiconductors. J Phys Chem Solids, 1960, 12(2):181 doi: 10.1016/0022-3697(60)90035-4
Fig. 1.  Schematic diagram of a Ge TFET.

Fig. 2.  Surface potential profiles of Ge-TFET for channel length $L=$ 50 nm and $V_{\rm DS}$ $=$ 1.2 V with different gate voltages.

Fig. 3.  Surface potential profiles of Ge-TFET and Si-TFET for channel length $L=$ 50 nm and $V_{\rm DS}$ $=$ 1.2 V.

Fig. 4.  Electric field along the channel $E_x$ and vertical electric field $E_y$ of Ge-TFET and Si-TEFT for channel length $L=$ 50 nm, $V_{\rm DS}$ $=$ 1.2 V and $V_{\rm GS}$ $=$ 1.2 V.

Fig. 5.  $I_{\rm D}$-$V_{\rm GS}$ characteristics of Ge-TFET and Si-TFET for channel length $L=$ 50 nm, $V_{\rm DS}$ $=$ 1.2 V, $N_{\rm D}$ $=$ 10$^{19}$ cm$^{-3}$ and $N_{\rm A}$ $=$ 10$^{20}$ cm$^{-3}$.

Fig. 6.  $I_{\rm D}$-$V_{\rm GS}$ characteristics of Ge-TFET with various source doping concentrations for channel length $L=$ 50 nm, $V_{\rm DS}$ $=$ 1.2 V and $N_{\rm D}$ $=$ 10$^{19}$ cm$^{-3}$.

Table 1.   Process parameters for simulated Ge TFET.

[1]
Zhang Q, Zhao W, Seabaugh A, et al. Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett, 2006, 27(4):297 doi: 10.1109/LED.2006.871855
[2]
Appenzeller J, Lin Y M, Knoch J, et al. Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett, 2004, 93(19):196 doi: 10.1103/PhysRevLett.93.196805
[3]
Toh E H, Wang G H, Chan L, et al. Device design and scalability of a double-gate tunnelling field-effect transistor with silicon-germanium source. Jpn J Appl Phys, 2008, 47(4):2593 doi: 10.1143/JJAP.47.2593
[4]
Kim S H, Kam H, Hu C, et al. Germanium-source tunnel field effect transistors with record high ION/IOFF. IEEE VLSI Symp on VLSI Technology, 2009:178
[5]
Boucart K, Ionescu A M. Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Devices, 2007, 54(7):1725 doi: 10.1109/TED.2007.899389
[6]
Toh E H, Wang G H, Samudra G, et al. Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Appl Phys Lett, 2007, 90(26):263 doi: 10.1063/1.2748366?journalCode=apl
[7]
Damrongplasit N, Shin C. Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans Electron Devices, 2011, 58(10):3541 doi: 10.1109/TED.2011.2161990
[8]
Nayfeh O M, Hoyt J L, Antoniads D A. Strained Si1-xGex/Si band-to-band tunneling transistors:impact of tunnel-junction germanium composition and doping concentration on switching behaviour. IEEE Trans Electron Devices, 2009, 56(10):2264 doi: 10.1109/TED.2009.2028055
[9]
Toh E H, Wang G H, Samudra G, et al. Device physics and design of germanium tunnelling field-effect transistor with source and drain engineering for low power and high performance applications. J Appl Phys, 2008, 103(10):104504 doi: 10.1063/1.2924413
[10]
Lee M J. Analytical model of a single-gate silicon-on-insulator (SOI) tunneling field-effect transistors (TFETs). Solid-State Electron, 2011, 63:110 doi: 10.1016/j.sse.2011.05.008
[11]
Kane. Zener tunneling in semiconductors. J Phys Chem Solids, 1960, 12(2):181 doi: 10.1016/0022-3697(60)90035-4
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2787 Times PDF downloads: 28 Times Cited by: 0 Times

    History

    Received: 02 July 2013 Revised: Online: Published: 01 March 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      T. S. Arun Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET[J]. Journal of Semiconductors, 2014, 35(3): 034002. doi: 10.1088/1674-4926/35/3/034002 T. S. A. Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET[J]. J. Semicond., 2014, 35(3): 034002. doi:  10.1088/1674-4926/35/3/034002.Export: BibTex EndNote
      Citation:
      T. S. Arun Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET[J]. Journal of Semiconductors, 2014, 35(3): 034002. doi: 10.1088/1674-4926/35/3/034002

      T. S. A. Samuel, N. B. Balamurugan. Analytical modeling and simulation of germanium single gate silicon on insulator TFET[J]. J. Semicond., 2014, 35(3): 034002. doi:  10.1088/1674-4926/35/3/034002.
      Export: BibTex EndNote

      Analytical modeling and simulation of germanium single gate silicon on insulator TFET

      doi: 10.1088/1674-4926/35/3/034002
      More Information
      • Corresponding author: T. S. Arun Samuel, Email:arunsamuel@tce.edu
      • Received Date: 2013-07-02
      • Published Date: 2014-03-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return