SEMICONDUCTOR PHYSICS

Metal dopants in HfO2-based RRAM:first principle study

Yuanyang Zhao1, Jiayu Wang1, Jianbin Xu1, Fei Yang1, Qi Liu2 and Yuehua Dai1,

+ Author Affiliations

 Corresponding author: Dai Yuehua, Email: daiyuehua2013@163.com

PDF

Abstract: Based on density-functional theory (DFT), the effects of metal dopants in HfO2-based RRAM are studied by the Vienna ab initio simulation package (VASP). Metal dopants are classified into two types (interstitial and substitutional) according to the formation energy when they exist in HfO2 cell. Several conductive channels are observed through the isosurface plots of the partial charge density for HfO2 doped with interstitial metals, while this phenomenon cannot be found in HfO2 doped with substitutional metals. The electron density of states (DOS) and the projected electron density of states (PDOS) are calculated and analyzed; it is found that the conduction filament in HfO2 is directly formed by the interstitial metals and further, that the substitutional metals cannot directly generate conduction filament. However, all the metal dopants contribute to the formation of the oxygen vacancy (VO) filament. The formation energy of the VO and the interaction between metal dopants and Vo are calculated; it is revealed that the P-type substitutional metal dopants have a strong enhanced effect on the VO filament, the interstitial metal dopants have a minor assistant effect, while Hf-like and N-type substitutional metal dopants have the weakest assistant effect.

Key words: RRAMmetal dopantconduction filamentinterstitialsubstitutional



[1]
Zhang Y, Kim S B, McVittie J P, et al. An integrated phase change memory cell with Ge nanowire diode for cross-point memory. Proceedings of the IEEE Symposium on VLSI Technology, 2007:98 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4339742&openedRefinements%3D*%26filter%3DAND%28AND%28NOT%284283010803%29%29%2CAND%28NOT%284283010803%29%29%29%26pageNumber%3D11%26rowsPerPage%3D100%26queryText%3D%28%28nanowire+circuit%29%29
[2]
Bedeschi F, Fackenthal R, Resta C, et al. A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J Solid-State Circuits, 2009, 44(1):217 doi: 10.1109/JSSC.2008.2006439
[3]
Nakamoto H, Yamazaki D, Yamamoto T, et al. A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology. IEEE J Solid-State Circuits, 2007, 42(10):101 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4039597
[4]
Tehrani S, Chen E, Durlam M, et al. High density nonvolatile magnetoresistive RAM. International Electron Devices Meeting, 1996:193 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=553152&punumber%3D4251
[5]
Chen E Y, Tehrani S, Zhu T, et al. Submicron spin valve magnetoresistive random access memory cell. J Appl Phys, 1997, 81(8):3992 doi: 10.1063/1.364917
[6]
Du Huan, Zhao Yuyin, Han Zhengsheng, et al. Investigation on interface planarization of driver IC for storage cells of MRAM. Chinese Journal of Semiconductors, 2006, 27(Suppl):358
[7]
Shang Dashan, Sun Jirong, Shen Baogen, et al. Resistance switching in oxides with inhomogeneous conductivity. Chin Phys B, 2013, 22(6):067202 doi: 10.1088/1674-1056/22/6/067202
[8]
Baek I G, Lee M S, Seo S, et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech Dig, 2004:587 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1419228&punumber%3D9719%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A30682%29%26pageNumber%3D4
[9]
Wang Z, Griffin P B, McVittie J, et al. Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices. IEEE Electron Device Lett, 2007, 28(1):14 doi: 10.1109/LED.2006.887640
[10]
Sakamoto T, Sunamura H, Kawaura H, et al. Nanometer-scale switches using copper sulfide. Appl Phys Lett, 2003, 82(18):3032 doi: 10.1063/1.1572964
[11]
Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9(4):1636 doi: 10.1021/nl900006g
[12]
Zhuang W W, Pan W, Ulrich B D, et al. Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). International Electron Devices Meeting, 2002:193 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1175811&
[13]
Hickmott T W. Impurity conduction and negative resistance in thin oxide films. J Appl Phys, 1964, 35(7):2118 doi: 10.1063/1.1702801
[14]
Zhou Maoxiu, Zhao Qiang, Zhang Wei, et al. The conductive path in HfO2:first principles study. Journal of Semiconductors, 2012, 33(7):072002 doi: 10.1088/1674-4926/33/7/072002
[15]
Liu Q, Sun J, Lv H B, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater, 2012, 24(14):1844 doi: 10.1002/adma.v24.14
[16]
Liu Qi, Long Shibing, Guan Weihua, et al. Unipolar resistive switching of Au+-implanted ZrO2 films. Journal of Semiconductors, 2009, 30(4):042001 doi: 10.1088/1674-4926/30/4/042001
[17]
Liu Q, Liu M, Wang Y, et al. Doping technology:an effective way to improve the performances of resistive switching memory. 11th International Workshop on Junction Technology (IWJT), 2011:80 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=5970005&contentType=Conference+Publications
[18]
Lee M S, Choi S, An C H, et al. Resistive switching characteristics of solution-deposited Gd, Dy, and Ce-doped ZrO2 films. Appl Phys Lett, 2012, 100(14):143504 doi: 10.1063/1.3700728
[19]
Long S B, Liu Q, Lv H B, et al. Resistive switching mechanism of Cu doped ZrO2-based RRAM. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:1163 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005667589
[20]
Liu Q, Long S B, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. Proceedings of the European Solid State Device Research Conference, 2009:221 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000005331613
[21]
Wang Y, Liu Q, Long S B, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21(4):045202 doi: 10.1088/0957-4484/21/4/045202
[22]
Zhao Qiang, Zhou Maoxiu, Zhang Wei, et al. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. Journal of Semiconductors, 2013, 34(3):032001 doi: 10.1088/1674-4926/34/3/032001
[23]
Wan Qixin, Xiong Zhihua, Rao Jianping, et al. First-principles calculation of ZnO doped with Ag. Chinese Journal of Semiconductors, 2007, 28(5):696 http://www.oalib.com/paper/1521385#.WcNxLVMdj3Q
[24]
Luan H X, Zhang C W, Zheng F B, et al. First-principles study of the electronic properties of B/N atom doped silicene nanoribbons. J Phys Chem C, 2013, 117(26):13620 doi: 10.1021/jp4005357
[25]
Li Lezhong, Yang Weiqing, Ding Yingchun, et al. First principle study of the electronic structure of hafnium-doped anatase TiO2. Journal of Semiconductors, 2012, 33(1):012002 doi: 10.1088/1674-4926/33/1/012002
[26]
Zhao L, Ryu S W, Hazeghi A, et al. Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics:a systematic study. Symposium on VLSI Technology Digest of Technical, 2013:T106
Fig. 1.  Formation energy in different sites of eleven metal dopants.

Fig. 2.  Energy bands and the electron density of states (DOS) of undoped HfO$_{2}$ system.

Fig. 3.  The total electron density of states (DOS) and the projected electron density of states (PDOS) of (a) Mg, (b) Al, (c) Ni, (d) Cu and (e) Ag doping system respectively.

Fig. 4.  (Color online) Isosurface plots of partial charge density caused by the defect state of the interstitial dopants, red balls are O, gray balls are Hf, while the rest are dopant atoms.

Fig. 5.  The total electron density of states (DOS) and the projected electron density of states (PDOS) of the (a) Sc, (b) La, (c) Ti, (d) Zr, (e) Nb and (f) Ta doping system respectively.

Fig. 6.  (Color online) Isosurface plot of the partial charge density caused by the defect state of N-type dopants: red balls are O, gray balls are Hf, and the rest are dopant atoms.

Fig. 7.  (Color online) (a) The microscopic HfO$_{2}$ model with four existing oxygen vacancies. The blank circles represent oxygen vacancies. (b) The isosurface plot of the partial charge density of the V$_{\rm O}$ defect state.

Fig. 8.  Formation energy of V$_{\rm O3}$ and V$_{\rm O4}$.

Fig. 9.  Interaction energy between the V$_{\rm O}$ and dopant based on the different doping systems. The "-eV" means that all of the original values are negative.

Table 1.   Valence electron numbers of the substitution dopants.

Table 2.   Values of interaction energy between the dopant and V$_{\rm O}$.

[1]
Zhang Y, Kim S B, McVittie J P, et al. An integrated phase change memory cell with Ge nanowire diode for cross-point memory. Proceedings of the IEEE Symposium on VLSI Technology, 2007:98 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4339742&openedRefinements%3D*%26filter%3DAND%28AND%28NOT%284283010803%29%29%2CAND%28NOT%284283010803%29%29%29%26pageNumber%3D11%26rowsPerPage%3D100%26queryText%3D%28%28nanowire+circuit%29%29
[2]
Bedeschi F, Fackenthal R, Resta C, et al. A bipolar-selected phase change memory featuring multi-level cell storage. IEEE J Solid-State Circuits, 2009, 44(1):217 doi: 10.1109/JSSC.2008.2006439
[3]
Nakamoto H, Yamazaki D, Yamamoto T, et al. A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology. IEEE J Solid-State Circuits, 2007, 42(10):101 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4039597
[4]
Tehrani S, Chen E, Durlam M, et al. High density nonvolatile magnetoresistive RAM. International Electron Devices Meeting, 1996:193 http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?reload=true&arnumber=553152&punumber%3D4251
[5]
Chen E Y, Tehrani S, Zhu T, et al. Submicron spin valve magnetoresistive random access memory cell. J Appl Phys, 1997, 81(8):3992 doi: 10.1063/1.364917
[6]
Du Huan, Zhao Yuyin, Han Zhengsheng, et al. Investigation on interface planarization of driver IC for storage cells of MRAM. Chinese Journal of Semiconductors, 2006, 27(Suppl):358
[7]
Shang Dashan, Sun Jirong, Shen Baogen, et al. Resistance switching in oxides with inhomogeneous conductivity. Chin Phys B, 2013, 22(6):067202 doi: 10.1088/1674-1056/22/6/067202
[8]
Baek I G, Lee M S, Seo S, et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech Dig, 2004:587 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=1419228&punumber%3D9719%26sortType%3Dasc_p_Sequence%26filter%3DAND%28p_IS_Number%3A30682%29%26pageNumber%3D4
[9]
Wang Z, Griffin P B, McVittie J, et al. Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices. IEEE Electron Device Lett, 2007, 28(1):14 doi: 10.1109/LED.2006.887640
[10]
Sakamoto T, Sunamura H, Kawaura H, et al. Nanometer-scale switches using copper sulfide. Appl Phys Lett, 2003, 82(18):3032 doi: 10.1063/1.1572964
[11]
Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9(4):1636 doi: 10.1021/nl900006g
[12]
Zhuang W W, Pan W, Ulrich B D, et al. Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). International Electron Devices Meeting, 2002:193 http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1175811&
[13]
Hickmott T W. Impurity conduction and negative resistance in thin oxide films. J Appl Phys, 1964, 35(7):2118 doi: 10.1063/1.1702801
[14]
Zhou Maoxiu, Zhao Qiang, Zhang Wei, et al. The conductive path in HfO2:first principles study. Journal of Semiconductors, 2012, 33(7):072002 doi: 10.1088/1674-4926/33/7/072002
[15]
Liu Q, Sun J, Lv H B, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater, 2012, 24(14):1844 doi: 10.1002/adma.v24.14
[16]
Liu Qi, Long Shibing, Guan Weihua, et al. Unipolar resistive switching of Au+-implanted ZrO2 films. Journal of Semiconductors, 2009, 30(4):042001 doi: 10.1088/1674-4926/30/4/042001
[17]
Liu Q, Liu M, Wang Y, et al. Doping technology:an effective way to improve the performances of resistive switching memory. 11th International Workshop on Junction Technology (IWJT), 2011:80 http://ieeexplore.ieee.org/xpl/abstractKeywords.jsp?reload=true&arnumber=5970005&contentType=Conference+Publications
[18]
Lee M S, Choi S, An C H, et al. Resistive switching characteristics of solution-deposited Gd, Dy, and Ce-doped ZrO2 films. Appl Phys Lett, 2012, 100(14):143504 doi: 10.1063/1.3700728
[19]
Long S B, Liu Q, Lv H B, et al. Resistive switching mechanism of Cu doped ZrO2-based RRAM. 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2010:1163 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005667589
[20]
Liu Q, Long S B, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. Proceedings of the European Solid State Device Research Conference, 2009:221 http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000005331613
[21]
Wang Y, Liu Q, Long S B, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21(4):045202 doi: 10.1088/0957-4484/21/4/045202
[22]
Zhao Qiang, Zhou Maoxiu, Zhang Wei, et al. Effects of interaction between defects on the uniformity of doping HfO2-based RRAM:a first principle study. Journal of Semiconductors, 2013, 34(3):032001 doi: 10.1088/1674-4926/34/3/032001
[23]
Wan Qixin, Xiong Zhihua, Rao Jianping, et al. First-principles calculation of ZnO doped with Ag. Chinese Journal of Semiconductors, 2007, 28(5):696 http://www.oalib.com/paper/1521385#.WcNxLVMdj3Q
[24]
Luan H X, Zhang C W, Zheng F B, et al. First-principles study of the electronic properties of B/N atom doped silicene nanoribbons. J Phys Chem C, 2013, 117(26):13620 doi: 10.1021/jp4005357
[25]
Li Lezhong, Yang Weiqing, Ding Yingchun, et al. First principle study of the electronic structure of hafnium-doped anatase TiO2. Journal of Semiconductors, 2012, 33(1):012002 doi: 10.1088/1674-4926/33/1/012002
[26]
Zhao L, Ryu S W, Hazeghi A, et al. Dopant selection rules for extrinsic tunability of HfOx RRAM characteristics:a systematic study. Symposium on VLSI Technology Digest of Technical, 2013:T106
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3038 Times PDF downloads: 31 Times Cited by: 0 Times

    History

    Received: 26 November 2013 Revised: 01 January 2014 Online: Published: 01 April 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuanyang Zhao, Jiayu Wang, Jianbin Xu, Fei Yang, Qi Liu, Yuehua Dai. Metal dopants in HfO2-based RRAM:first principle study[J]. Journal of Semiconductors, 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002 Y Y Zhao, J Y Wang, J B Xu, F Yang, Q Liu, Y H Dai. Metal dopants in HfO2-based RRAM:first principle study[J]. J. Semicond., 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002.Export: BibTex EndNote
      Citation:
      Yuanyang Zhao, Jiayu Wang, Jianbin Xu, Fei Yang, Qi Liu, Yuehua Dai. Metal dopants in HfO2-based RRAM:first principle study[J]. Journal of Semiconductors, 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002

      Y Y Zhao, J Y Wang, J B Xu, F Yang, Q Liu, Y H Dai. Metal dopants in HfO2-based RRAM:first principle study[J]. J. Semicond., 2014, 35(4): 042002. doi: 10.1088/1674-4926/35/4/042002.
      Export: BibTex EndNote

      Metal dopants in HfO2-based RRAM:first principle study

      doi: 10.1088/1674-4926/35/4/042002
      More Information
      • Corresponding author: Dai Yuehua, Email: daiyuehua2013@163.com
      • Received Date: 2013-11-26
      • Revised Date: 2014-01-01
      • Published Date: 2014-04-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return