SEMICONDUCTOR DEVICES

Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications

Jie Huang1, 2, , Qian Zhao3, Hao Yang4, Junrong Dong4 and Haiying Zhang4

+ Author Affiliations

 Corresponding author: Huang Jie, Email:jiehuang@swu.edu.cn

PDF

Abstract: A GaAs-based planar Schottky varactor diode (PSVD) is successfully developed to meet the demand of millimeter-wave harmonic generation. Based on the measured S-parameter, I-V and C-V characteristics, an accurate and reliable extraction method of the millimeter-wave large signal equivalent circuit model of the PSVD is proposed and used to extract the model parameters of two PSVDs with Schottky contact areas of 160 μm2 and 49 μm2, respectively. The simulated S-parameter, I-V and C-V performances of the proposed physics-based model are in good agreement with the measured one over the frequency range from 0.1 to 40 GHz for wide operation bias range from -10 to 0.6 V for these two PSVDs. The proposed equivalent large signal circuit model of this PSVD has been proven to be reliable and can potentially be used to design microwave circuits.

Key words: planar Schottky varactor diodelarge signal equivalent circuit modelmillimeter-waveGaAs



[1]
Carman E, Case M, Kamegawa M, et al. V-band and W-band broadband monolithic distributed multipliers. IEEE Microw Guided Wave Lett, 1992, 2(6):253 doi: 10.1109/75.136523
[2]
Debabani C, Margaret A F, Paul D B. A 200 GHz tripler using a single barrier varactor. IEEE Trans Microw Theory Tech, 1999, 41(4):595 http://www.academia.edu/7126314/A_200_GHz_tripler_using_a_single_barrier_varactor
[3]
Bentley N S, Gailon E B, Fred H D. X-band GaAs monolithic voltage controlled oscillator. ISSCC-82 Dig, 1982:138
[4]
Garver R V. 360° varactor linear phase modulator. IEEE Trans Microw Theory Tech, 1969, 17(3):137 doi: 10.1109/TMTT.1969.1126912
[5]
Kim H, Kozyrev A B, Karbassi A, et al. Compact left-handed transmission line as a linear phase-voltage modulator and efficient harmonic generator. IEEE Trans Microw Theory Tech, 2007, 55(3):571 doi: 10.1109/TMTT.2007.891692
[6]
Pascal P, Walid E K, Vlad P. Physical equivalent circuit model for planar Schottky varactor diode. IEEE Trans Microw Theory Tech, 1988, 36(2):250 doi: 10.1109/22.3512
[7]
Crupi G, Schreurs D M M, Caddemi A, et al. A new millimeter-wave small-signal modeling approach for pHEMTs accounting for the output conductance time delay. IEEE Trans Microw Theory Tech, 2008, 56(4):741 doi: 10.1109/TMTT.2008.918147
[8]
Huang J, Dong J R, Yang H, et al. A K-band broadband monolithic distributed frequency multiplier based on nonlinear transmission line. Chin Phys B, 2011, 20(6):060702 doi: 10.1088/1674-1056/20/6/060702
[9]
Dong J R, Huang J, Tian C, et al. A broadband GaAs MMIC frequency doubler on left-handed nonlinear transmission lines. Journal of Semiconductors, 2011, 32(9):095003 doi: 10.1088/1674-4926/32/9/095003
[10]
Chen S W, Ho C T, Pande K, et al. Rigorous analysis and design of a high-performance 94 GHz MMIC doubler. IEEE Trans Microw Theory Tech, 1993, 41(12):2317 doi: 10.1109/22.260723
[11]
Qun X. Millimeter and sub-millimeter wave heterostructure barrier varactor frequency multipliers. PhD Dissertation, University of Virginia, 2005
[12]
Donald N. Semiconductor physics and device. Beijing:Electronics Industry Press, 2005
Fig. 1.  Schematic diagram and photograph of the PSVD.

Fig. 2.  Large signal equivalent circuit model for the PSVD.

Fig. 3.  Characteristic of the PSVD at large forward-biased voltage.

Fig. 4.  Characteristic of the PVSD in a varactor mode.

Fig. 7.  Comparison of the measured and modeled $I$$V$, $C$$V$ and $S$-parameters of 49 $\mu $m$^{2}$ PSVD versus frequency at different biases.

Fig. 5.  $C$$V$ and $I$$V$ characteristics of the PSVD.

Fig. 6.  Comparison of the measured and modeled S-parameters of 160 μm2 PSVD versus frequency at different bias.

Table 1.   The planar Schottky varactor diode epitaxial layer structure.

Table 2.   The equivalent large signal model parameters of PSVD with Schottky contact areas of 160 $\mu $m$^{2}$ and 49 $\mu $m$^{2}$ ($V_{\rm on}$ referred to as the turn-on voltage, $I$ @ 1.1 V as the current at 1.1 V forward bias).

[1]
Carman E, Case M, Kamegawa M, et al. V-band and W-band broadband monolithic distributed multipliers. IEEE Microw Guided Wave Lett, 1992, 2(6):253 doi: 10.1109/75.136523
[2]
Debabani C, Margaret A F, Paul D B. A 200 GHz tripler using a single barrier varactor. IEEE Trans Microw Theory Tech, 1999, 41(4):595 http://www.academia.edu/7126314/A_200_GHz_tripler_using_a_single_barrier_varactor
[3]
Bentley N S, Gailon E B, Fred H D. X-band GaAs monolithic voltage controlled oscillator. ISSCC-82 Dig, 1982:138
[4]
Garver R V. 360° varactor linear phase modulator. IEEE Trans Microw Theory Tech, 1969, 17(3):137 doi: 10.1109/TMTT.1969.1126912
[5]
Kim H, Kozyrev A B, Karbassi A, et al. Compact left-handed transmission line as a linear phase-voltage modulator and efficient harmonic generator. IEEE Trans Microw Theory Tech, 2007, 55(3):571 doi: 10.1109/TMTT.2007.891692
[6]
Pascal P, Walid E K, Vlad P. Physical equivalent circuit model for planar Schottky varactor diode. IEEE Trans Microw Theory Tech, 1988, 36(2):250 doi: 10.1109/22.3512
[7]
Crupi G, Schreurs D M M, Caddemi A, et al. A new millimeter-wave small-signal modeling approach for pHEMTs accounting for the output conductance time delay. IEEE Trans Microw Theory Tech, 2008, 56(4):741 doi: 10.1109/TMTT.2008.918147
[8]
Huang J, Dong J R, Yang H, et al. A K-band broadband monolithic distributed frequency multiplier based on nonlinear transmission line. Chin Phys B, 2011, 20(6):060702 doi: 10.1088/1674-1056/20/6/060702
[9]
Dong J R, Huang J, Tian C, et al. A broadband GaAs MMIC frequency doubler on left-handed nonlinear transmission lines. Journal of Semiconductors, 2011, 32(9):095003 doi: 10.1088/1674-4926/32/9/095003
[10]
Chen S W, Ho C T, Pande K, et al. Rigorous analysis and design of a high-performance 94 GHz MMIC doubler. IEEE Trans Microw Theory Tech, 1993, 41(12):2317 doi: 10.1109/22.260723
[11]
Qun X. Millimeter and sub-millimeter wave heterostructure barrier varactor frequency multipliers. PhD Dissertation, University of Virginia, 2005
[12]
Donald N. Semiconductor physics and device. Beijing:Electronics Industry Press, 2005
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2602 Times PDF downloads: 32 Times Cited by: 0 Times

    History

    Received: 25 September 2013 Revised: 02 December 2013 Online: Published: 01 May 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jie Huang, Qian Zhao, Hao Yang, Junrong Dong, Haiying Zhang. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications[J]. Journal of Semiconductors, 2014, 35(5): 054006. doi: 10.1088/1674-4926/35/5/054006 J Huang, Q Zhao, H Yang, J R Dong, H Y Zhang. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications[J]. J. Semicond., 2014, 35(5): 054006. doi: 10.1088/1674-4926/35/5/054006.Export: BibTex EndNote
      Citation:
      Jie Huang, Qian Zhao, Hao Yang, Junrong Dong, Haiying Zhang. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications[J]. Journal of Semiconductors, 2014, 35(5): 054006. doi: 10.1088/1674-4926/35/5/054006

      J Huang, Q Zhao, H Yang, J R Dong, H Y Zhang. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications[J]. J. Semicond., 2014, 35(5): 054006. doi: 10.1088/1674-4926/35/5/054006.
      Export: BibTex EndNote

      Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications

      doi: 10.1088/1674-4926/35/5/054006
      Funds:

      the Fundamental Research Funds for Central University of China XDJK2013B004

      the State Key Laboratory for Millimeter Waves of Southeast University of China K201312

      the Research Fund for the Doctoral Program of Southwest University of China XDJK2013B004

      Project supported by the Fundamental Research Funds for Central University of China (No. XDJK2013B004), the Research Fund for the Doctoral Program of Southwest University of China (No. SWU111030), and the State Key Laboratory for Millimeter Waves of Southeast University of China (No. K201312)

      More Information
      • Corresponding author: Huang Jie, Email:jiehuang@swu.edu.cn
      • Received Date: 2013-09-25
      • Revised Date: 2013-12-02
      • Published Date: 2014-05-05

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return