SEMICONDUCTOR INTEGRATED CIRCUITS

A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications

Xian Li, Huicai Zhong, Cheng Jia and Xin Li

+ Author Affiliations

 Corresponding author: Li Xian, Email:lixian@ime.ac.cn

PDF

Abstract: A 4-kbit low-cost one-time programmable (OTP) memory macro for embedded applications is designed and implemented in a 0.18-μm standard CMOS process. The area of the proposed 1.5 transistor (1.5T) OTP cell is 2.13 μm2, which is a 49.3% size reduction compared to the previously reported cells. The 1.5T cell is fabricated and measured and shows a large programming window without any disturbance. A novel high voltage switch (HVSW) circuit is also proposed to make sure the OTP macro, implemented in a standard CMOS process, works reliably with the high program voltage. The OTP macro is embedded in negative radio frequency identification (RFID) tags. The full chip size, including the analog front-end, digital controller and the 4-kbit OTP macro, is 600×600 μm2. The 4-kbit OTP macro only consumes 200×260 μm2. The measurement shows a 100% program yield by adjusting the program time and has obvious advantages in the core area and power consumption compared to the reported 3T and 2T OTP cores.

Key words: OTP1.5 transistor cellhigh voltage switchRFIDsize reduction



[1]
Cha H K, Yun I, Kim J, et al. A 32-KB standard CMOS antifuse one-time programmable ROM embedded in a 16-bit microcontroller. IEEE J Solid-State Circuits, 2006, 41:2115 doi: 10.1109/JSSC.2006.880603
[2]
Yang Xiaonan, Wang Yong, Zhang Manhong. A novel 2-T structure memory device using a Si nanodot for embedded application. Journal of Semiconductors, 2011, 32(12):124007 doi: 10.1088/1674-4926/32/12/124007
[3]
Jia Xiaoyun, Feng Peng, Zhang Shengguang. An ultra-low-power area efficient non-volatile memeory in 0.18μm single-poly CMOS process for passive RFID tags. Journal of Semiconductors, 2013, 34(8):085004 doi: 10.1088/1674-4926/34/8/085004
[4]
Kothandaraman C, Iyer S K, Iyer S S. Electrically programmable fuse (eFUSE) using electromigration in silicides. IEEE Electron Device Lett, 2002, 23:523 doi: 10.1109/LED.2002.802657
[5]
Alavi M, Bohr M, Hicks J, et al. A PROM element based on salicide agglomeration of poly fuses in a CMOS logic process. Technical Digest, International Electron Devices Meeting, 1997:855 http://www.smtnet.com/library/files/upload/prom-element.pdf
[6]
Wee J K, Min K S, Park J T, et al. A post-package bit-repair scheme using static latches with bipolar-voltage programmable antifuse circuit for high-density DRAMs. IEEE J Solid-State Circuits, 2002, 37:251 doi: 10.1109/4.982432
[7]
Candelier P, Villani N, Schoellkopf J P, et al. One time programmable drift antifuse cell reliability. Proceedings 38th Annual 2000 IEEE International Reliability Physics Symposium, 2000:169 http://ieeexplore.ieee.org/document/843909/
[8]
Ito H, Namekawa T. Pure CMOS one-time programmable memory using gate-ox anti-fuse. Proceedings of the IEEE Custom Integrated Circuits Conference, 2004:469 doi: 10.1007/s11771-011-0669-7
[9]
Kim J, Lee K. Three-transistor one-time programmable (OTP) ROM cell array using standard CMOS gate oxide antifuse. IEEE Electron Device Lett, 2003, 24:589 doi: 10.1109/LED.2003.815429
[10]
Barsatan R, Yin M T, Mansun C. A zero-mask one-time programmable memory array for RFID applications. Proceedings IEEE International Symposium on Circuits and Systems, 2006:4 https://www.mendeley.com/research-papers/zeromask-onetime-programmable-memory-array-rfid-applications/
[11]
Peng J, Rosendale G, Fliesler M. A novel embedded OTP NVM using standard foundry CMOS logic technology. NVSMW, 2006:24 doi: 10.1007/978-3-319-48339-9_9/fulltext.html
[12]
Palumbo G, Pappalardo D, Gaibotti M. Charge-pump circuits:power-consumption optimization. IEEE Trans Circuits Syst I-Fundamental Theory and Applications, 2002, 49:1535 doi: 10.1109/TCSI.2002.804544
[13]
Baek J M, Chun J H, Kwon K W. A power-efficient voltage upconverter for embedded EEPROM application. IEEE Trans Circuits Syst Ⅱ-Express Briefs, 2010, 57:435 doi: 10.1109/TCSII.2010.2048351
Fig. 1.  (a) Schematic of 1.5T OTP cell. (b) Cross-sectional view of the cell.

Fig. 2.  The breakdown $I$- $V$ characteristics of the cell.

Fig. 3.  The read current distribution of breakdown cells.

Fig. 4.  The read current before programming and after programming.

Fig. 5.  The OTP 2 $\times $ 2 array with cell 1 being biased to program.

Fig. 6.  Sweep the BL from 0 to 600 mV and read the current with cell 1 and cell 4 programmed, cell 2 and cell 3 not programmed.

Fig. 7.  The block diagram of 4-kbit memory macro.

Fig. 8.  The circuit of proposed high voltage switch.

Fig. 9.  The microphotograph of fabricated full chip.

Fig. 10.  Program yield versus program time

Table 1.   The contrast of key features

[1]
Cha H K, Yun I, Kim J, et al. A 32-KB standard CMOS antifuse one-time programmable ROM embedded in a 16-bit microcontroller. IEEE J Solid-State Circuits, 2006, 41:2115 doi: 10.1109/JSSC.2006.880603
[2]
Yang Xiaonan, Wang Yong, Zhang Manhong. A novel 2-T structure memory device using a Si nanodot for embedded application. Journal of Semiconductors, 2011, 32(12):124007 doi: 10.1088/1674-4926/32/12/124007
[3]
Jia Xiaoyun, Feng Peng, Zhang Shengguang. An ultra-low-power area efficient non-volatile memeory in 0.18μm single-poly CMOS process for passive RFID tags. Journal of Semiconductors, 2013, 34(8):085004 doi: 10.1088/1674-4926/34/8/085004
[4]
Kothandaraman C, Iyer S K, Iyer S S. Electrically programmable fuse (eFUSE) using electromigration in silicides. IEEE Electron Device Lett, 2002, 23:523 doi: 10.1109/LED.2002.802657
[5]
Alavi M, Bohr M, Hicks J, et al. A PROM element based on salicide agglomeration of poly fuses in a CMOS logic process. Technical Digest, International Electron Devices Meeting, 1997:855 http://www.smtnet.com/library/files/upload/prom-element.pdf
[6]
Wee J K, Min K S, Park J T, et al. A post-package bit-repair scheme using static latches with bipolar-voltage programmable antifuse circuit for high-density DRAMs. IEEE J Solid-State Circuits, 2002, 37:251 doi: 10.1109/4.982432
[7]
Candelier P, Villani N, Schoellkopf J P, et al. One time programmable drift antifuse cell reliability. Proceedings 38th Annual 2000 IEEE International Reliability Physics Symposium, 2000:169 http://ieeexplore.ieee.org/document/843909/
[8]
Ito H, Namekawa T. Pure CMOS one-time programmable memory using gate-ox anti-fuse. Proceedings of the IEEE Custom Integrated Circuits Conference, 2004:469 doi: 10.1007/s11771-011-0669-7
[9]
Kim J, Lee K. Three-transistor one-time programmable (OTP) ROM cell array using standard CMOS gate oxide antifuse. IEEE Electron Device Lett, 2003, 24:589 doi: 10.1109/LED.2003.815429
[10]
Barsatan R, Yin M T, Mansun C. A zero-mask one-time programmable memory array for RFID applications. Proceedings IEEE International Symposium on Circuits and Systems, 2006:4 https://www.mendeley.com/research-papers/zeromask-onetime-programmable-memory-array-rfid-applications/
[11]
Peng J, Rosendale G, Fliesler M. A novel embedded OTP NVM using standard foundry CMOS logic technology. NVSMW, 2006:24 doi: 10.1007/978-3-319-48339-9_9/fulltext.html
[12]
Palumbo G, Pappalardo D, Gaibotti M. Charge-pump circuits:power-consumption optimization. IEEE Trans Circuits Syst I-Fundamental Theory and Applications, 2002, 49:1535 doi: 10.1109/TCSI.2002.804544
[13]
Baek J M, Chun J H, Kwon K W. A power-efficient voltage upconverter for embedded EEPROM application. IEEE Trans Circuits Syst Ⅱ-Express Briefs, 2010, 57:435 doi: 10.1109/TCSII.2010.2048351
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3056 Times PDF downloads: 54 Times Cited by: 0 Times

    History

    Received: 08 October 2013 Revised: 10 November 2013 Online: Published: 01 May 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xian Li, Huicai Zhong, Cheng Jia, Xin Li. A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications[J]. Journal of Semiconductors, 2014, 35(5): 055007. doi: 10.1088/1674-4926/35/5/055007 X Li, H C Zhong, C Jia, X Li. A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications[J]. J. Semicond., 2014, 35(5): 055007. doi: 10.1088/1674-4926/35/5/055007.Export: BibTex EndNote
      Citation:
      Xian Li, Huicai Zhong, Cheng Jia, Xin Li. A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications[J]. Journal of Semiconductors, 2014, 35(5): 055007. doi: 10.1088/1674-4926/35/5/055007

      X Li, H C Zhong, C Jia, X Li. A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications[J]. J. Semicond., 2014, 35(5): 055007. doi: 10.1088/1674-4926/35/5/055007.
      Export: BibTex EndNote

      A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications

      doi: 10.1088/1674-4926/35/5/055007
      More Information
      • Corresponding author: Li Xian, Email:lixian@ime.ac.cn
      • Received Date: 2013-10-08
      • Revised Date: 2013-11-10
      • Published Date: 2014-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return