SEMICONDUCTOR MATERIALS

Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang and Yufeng Zhang

+ Author Affiliations

 Corresponding author: Duan Bo, Email:boduan2013@163.com

PDF

Abstract: Surface roughness by peaks and depressions on the surface of titanium dioxide (TiO2) thin film, which was widely used for an antireflection coating of optical systems, caused the extinction coefficient increase and affected the properties of optical system. Chemical mechanical polishing (CMP) is a very important method for surface smoothing. In this polishing experiment, we used self-formulated weakly alkaline slurry. Other process parameters were working pressure, slurry flow rate, head speed, and platen speed. In order to get the best surface roughness (1.16 Å, the scanned area was 10×10 μm2) and a higher polishing rate (60.8 nm/min), the optimal parameters were:pressure, 1 psi; slurry flow rate, 250 mL/min; polishing head speed, 80 rpm; platen speed, 87 rpm.

Key words: TiO2 thin filmsurface roughnessCMPprocess parameters



[1]
Callback K, Sikora M, Kapusta C, et al. X-ray absorption and emission spectroscopy of TiO2 thin films with modified anionic sublattice. Radiation Physics and Chemistry, 2013, 93:40 doi: 10.1016/j.radphyschem.2013.03.035
[2]
Gioti M, Logothetidis S, Charitidis C, et al. On the properties and functionality of ultra-thin diamond related protective coatings used in optical systems. Sensors and Actuators A:Physical, 2002, 99:35 doi: 10.1016/S0924-4247(01)00887-1
[3]
Pareek R, Joshi A S, Gupta P D, et al. Sol-gel based anti-reflection coatings on wedged laser rods using a spin coater. Opt Laser Technol, 2005, 37:369 doi: 10.1016/j.optlastec.2004.05.005
[4]
Szczyrbowski J, Bräuer G, Teschner G, et al. Large-scale antireflective coatings on glass produced by reactive magnetron sputtering. Surf Coatings Technol, 1998, 98:1460 doi: 10.1016/S0257-8972(97)00151-5
[5]
Wang Wuyu, Wang Xijing, Yang Taili. Review on optoelectronic properties and applications of TiO2 films. Chinese Journal of Rare Metals, 2008, 32(6):781
[6]
Li F, Ni X. Improving poly(3-hexylthiophene)-TiO2 heterojunction solar cells by connecting polypyrrole to the TiO2 nanorods. Solar Energy Materials and Solar Cells, 2013, 118:109 doi: 10.1016/j.solmat.2013.08.012
[7]
Pei Z J, Fisher G R, Bhagavat M, et al. A grinding-based manufacturing method for silicon wafer:an experimental investigation. International Journal of Machine Tools and Manufacture, 2005, 45(10):1140 doi: 10.1016/j.ijmachtools.2004.12.006
[8]
Zhou L, Hosseini B S, Tsuruga T, et al. Fabrication and evaluation for extremely thin Si wafer. International Journal of Abrasive Technology, 2007, 1(1):94 doi: 10.1504/IJAT.2007.013852
[9]
Yin Kangda, Wang Shengli, Liu Yuling, et al. Evaluation of planarization capability of copper slurry in the CMP process. Journal of Semiconductors, 2013, 34(3):036002 doi: 10.1088/1674-4926/34/3/036002
[10]
Wang Chenwei, Liu Yuling, Tian Jianyin, et al. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP. Journal of Semiconductors, 2012, 33(11):116001 doi: 10.1088/1674-4926/33/11/116001
[11]
Liu Yuling, Zhang Kailiang, Wang Fang, et al. Investigation on the final polishing slurry and technique of silicon substrate in ULSI. Microelectron Eng, 2003, 66:438 doi: 10.1016/S0167-9317(02)00908-5
[12]
Wang Chenwei, Liu Yuling, Tian Jianying, et al. A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal. Microelectron Eng, 2012, 98:29 doi: 10.1016/j.mee.2012.05.028
[13]
Wei Wenhao, Liu Yuling, Wang Chenwei, et al. Study of a novel alkaline barrier slurry applied in copper chemical mechanical planarization. J Func Mater, 2012, 43(23):3333
[14]
Liu Yuling, Jia Yingqian. Used for large scale integrated circuit wiring multilayer tungsten plug in polishing slurry. China Patent, No. 200610013976. 8. 2006. 11. 08
[15]
Liu Yuling, Zhang Kailiang, Li Weiwei. Very large scale integrated circuit of multilayer copper wiring copper and tantalum in the CMP polishing slurry. China Patent, No. 2116761. 3. 2003. 03. 05
Fig. 1.  Schematic of TiO2 thin film structure

Fig. 2.  Calculation schematic of surface roughness

Fig. 3.  The relationship between TiO2 surface roughness and polishing pressure

Fig. 4.  The relationship between TiO2 surface roughness and slurry flow rate

Fig. 5.  The relationship between TiO2 surface roughness and polishing head/platen speed

Fig. 6.  AFM images of TiO2 thin film surface before polishing

Fig. 7.  AFM images of TiO2 thin film surface after polishing

Fig. 8.  Surface roughness values and removal rate of TiO2 thin film

Table 1.   The process conditions of TiO2 CMP

[1]
Callback K, Sikora M, Kapusta C, et al. X-ray absorption and emission spectroscopy of TiO2 thin films with modified anionic sublattice. Radiation Physics and Chemistry, 2013, 93:40 doi: 10.1016/j.radphyschem.2013.03.035
[2]
Gioti M, Logothetidis S, Charitidis C, et al. On the properties and functionality of ultra-thin diamond related protective coatings used in optical systems. Sensors and Actuators A:Physical, 2002, 99:35 doi: 10.1016/S0924-4247(01)00887-1
[3]
Pareek R, Joshi A S, Gupta P D, et al. Sol-gel based anti-reflection coatings on wedged laser rods using a spin coater. Opt Laser Technol, 2005, 37:369 doi: 10.1016/j.optlastec.2004.05.005
[4]
Szczyrbowski J, Bräuer G, Teschner G, et al. Large-scale antireflective coatings on glass produced by reactive magnetron sputtering. Surf Coatings Technol, 1998, 98:1460 doi: 10.1016/S0257-8972(97)00151-5
[5]
Wang Wuyu, Wang Xijing, Yang Taili. Review on optoelectronic properties and applications of TiO2 films. Chinese Journal of Rare Metals, 2008, 32(6):781
[6]
Li F, Ni X. Improving poly(3-hexylthiophene)-TiO2 heterojunction solar cells by connecting polypyrrole to the TiO2 nanorods. Solar Energy Materials and Solar Cells, 2013, 118:109 doi: 10.1016/j.solmat.2013.08.012
[7]
Pei Z J, Fisher G R, Bhagavat M, et al. A grinding-based manufacturing method for silicon wafer:an experimental investigation. International Journal of Machine Tools and Manufacture, 2005, 45(10):1140 doi: 10.1016/j.ijmachtools.2004.12.006
[8]
Zhou L, Hosseini B S, Tsuruga T, et al. Fabrication and evaluation for extremely thin Si wafer. International Journal of Abrasive Technology, 2007, 1(1):94 doi: 10.1504/IJAT.2007.013852
[9]
Yin Kangda, Wang Shengli, Liu Yuling, et al. Evaluation of planarization capability of copper slurry in the CMP process. Journal of Semiconductors, 2013, 34(3):036002 doi: 10.1088/1674-4926/34/3/036002
[10]
Wang Chenwei, Liu Yuling, Tian Jianyin, et al. Planarization properties of an alkaline slurry without an inhibitor on copper patterned wafer CMP. Journal of Semiconductors, 2012, 33(11):116001 doi: 10.1088/1674-4926/33/11/116001
[11]
Liu Yuling, Zhang Kailiang, Wang Fang, et al. Investigation on the final polishing slurry and technique of silicon substrate in ULSI. Microelectron Eng, 2003, 66:438 doi: 10.1016/S0167-9317(02)00908-5
[12]
Wang Chenwei, Liu Yuling, Tian Jianying, et al. A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal. Microelectron Eng, 2012, 98:29 doi: 10.1016/j.mee.2012.05.028
[13]
Wei Wenhao, Liu Yuling, Wang Chenwei, et al. Study of a novel alkaline barrier slurry applied in copper chemical mechanical planarization. J Func Mater, 2012, 43(23):3333
[14]
Liu Yuling, Jia Yingqian. Used for large scale integrated circuit wiring multilayer tungsten plug in polishing slurry. China Patent, No. 200610013976. 8. 2006. 11. 08
[15]
Liu Yuling, Zhang Kailiang, Li Weiwei. Very large scale integrated circuit of multilayer copper wiring copper and tantalum in the CMP polishing slurry. China Patent, No. 2116761. 3. 2003. 03. 05
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2859 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 08 December 2013 Revised: 20 January 2014 Online: Published: 01 June 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film[J]. Journal of Semiconductors, 2014, 35(6): 063003. doi: 10.1088/1674-4926/35/6/063003 B Duan, J W Zhou, Y L Liu, C W Wang, Y F Zhang. Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film[J]. J. Semicond., 2014, 35(6): 063003. doi: 10.1088/1674-4926/35/6/063003.Export: BibTex EndNote
      Citation:
      Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film[J]. Journal of Semiconductors, 2014, 35(6): 063003. doi: 10.1088/1674-4926/35/6/063003

      B Duan, J W Zhou, Y L Liu, C W Wang, Y F Zhang. Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film[J]. J. Semicond., 2014, 35(6): 063003. doi: 10.1088/1674-4926/35/6/063003.
      Export: BibTex EndNote

      Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film

      doi: 10.1088/1674-4926/35/6/063003
      Funds:

      Project supported by the Natural Science Foundation of Hebei Province (No. E2013202247), the Science and Technology Plan Project of Hebei Province (Nos. Z2010112, 10213936), and the Hebei Provincal Department of Education Fund (No. 2011128)

      the Natural Science Foundation of Hebei Province E2013202247

      the Science and Technology Plan Project of Hebei Province Z2010112

      the Science and Technology Plan Project of Hebei Province 10213936

      the Hebei Provincal Department of Education Fund 2011128

      More Information
      • Corresponding author: Duan Bo, Email:boduan2013@163.com
      • Received Date: 2013-12-08
      • Revised Date: 2014-01-20
      • Published Date: 2014-06-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return