SEMICONDUCTOR DEVICES

GaN-based high-voltage light-emitting diodes with backside reflector

Huamao Huang, Hong Wang, Xiaosheng Huang and Jinyong Hu

+ Author Affiliations

 Corresponding author: Wang Hong, Email:phhwang@scut.edu.cn

PDF

Abstract: High-voltage light-emitting diodes with backside reflector, including Ti3O5/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-Al is 4.6%, which is consistent with the simulated value of 4.9%.

Key words: high-voltage light-emitting diodeshybrid backside reflectordistributed Bragg reflectormetal reflectorlight extraction efficiency



[1]
Wang C H, Lin D W, Lee C Y, et al. Efficiency and droop improvement in GaN-based high-voltage light-emitting diodes. IEEE Electron Device Lett, 2011, 32(8): 1098 doi: 10.1109/LED.2011.2153176
[2]
Cao Dongxing, Guo Zhiyou, Liang Fubo, et al. The preparation and performance analysis of GaN-based high-voltage DC light emitting diode. Acta Phys Sin, 2012, 61(13): 138502
[3]
Horng R H, Shen K C, Kuo Y W, et al. Effects of cell distance on the performance of GaN high-voltage light emitting diodes. ECS Solid State Lett, 2012, 1(5): R21 doi: 10.1149/2.005205ssl
[4]
Wang Hong, Wu Yuefeng, Zhong Jiongsheng, et al. Fabrication of high-voltage LED chips with lateral columnar structure. Journal of Optoelectron Laser, 2013, 24(6): 1906 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ201310011.htm
[5]
Ding Yan, Guo Weiling, Zhu Yanxu, et al. Fabrication of high-voltage light emitting diodes with a deep isolation groove structure. Journal of Semiconductors, 2012, 33(9): 094007 doi: 10.1088/1674-4926/33/9/094007
[6]
Guo Weiling, Yan Weiwei, Zhu Yanxu, et al. Analysis on electrical characteristics of high-voltage GaN-based light-emitting diodes. Chinese Physics B, 2012, 21(12): 127201 doi: 10.1088/1674-1056/21/12/127201
[7]
Zhan Teng, Zhang Yang, Li Jing, et al. The design and fabrication of a GaN-based monolithic light-emitting diode array. Journal of Semiconductors. 2013, 34(9): 094010 doi: 10.1088/1674-4926/34/9/094010
[8]
Zhan Teng, Zhang Yang, Ma Jun, et al. Characteristics of GaN-based high-voltage LEDs compared to traditional high power LEDs. IEEE Photonics Technol Lett, 2013, 25(9): 844 doi: 10.1109/LPT.2013.2251878
[9]
Hsu Y P, Chang S J, Su Y K, et al. InGaN/GaN light-emitting diodes with a reflector at the backside of sapphire substrates. J Electron Mater, 2003, 32(5): 403 doi: 10.1007/s11664-003-0166-3
[10]
Chang S J, Shen C F, Hsieh M H, et al. Nitride-based LEDs with a hybrid Al mirror + TiO2/SiO2 DBR backside reflector. J Lightwave Technol, 2008, 26(17): 3131 doi: 10.1109/JLT.2008.923927
[11]
Lin N M, Shei S C, Chang S J. Nitride-based LEDs with high-reflectance and wide-angle Ag mirror SiO2/TiO2 DBR backside reflector. J Lightwave Technol, 2011, 29(7): 1033 doi: 10.1109/JLT.2011.2111416
[12]
Chen Hongjun, Guo Hao, Zhang Peiyuan, et al. Enhanced performance of GaN-based light-emitting diodes by using Al mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector with patterned sapphire substrate. Appl Phys Express, 2013, 6: 022101 doi: 10.7567/APEX.6.022101
[13]
Guo Hao, Chen Hongjun, Zhang Xiong, et al. High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector. Opt Eng, 2013, 52(6): 063402 doi: 10.1117/1.OE.52.6.063402
[14]
[15]
Lee T X, Gao K F, Chien W T, et al. Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate. Opt Express, 2007, 15(11): 6670 doi: 10.1364/OE.15.006670
[16]
Liu Zongyuan, Wang Kai, Luo Xiaobing, et al. Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing. Opt Express, 2010, 18(9): 9398 doi: 10.1364/OE.18.009398
Fig. 1.  Microscope photograph of the fabricated HV-LED chip.

Fig. 2.  Simulation model of the fabricated HV-LED chip. (a) Three-dimensional view. (b) Side view.

Fig. 3.  (Color online) The angular reflectivity of backside reflectors composed of several pairs of Ti3O5/SiO2 DBR (a) without metal layers, (b) with an Al metal layer, or (c) with an Ag metal layer. The incident angle is measured from a normal to the substrate, and the reflectance spectra are calculated at the wavelength of 460 nm.

Fig. 4.  The light-extraction efficiency of HV-LED chips with different backside reflectors. The data for conventional DBR pairs are hollow circles, while those for resigned DBR pairs are solid circles. The inset is the enlarged view of functional curves for DBR-Al and DBR-Ag hybrid reflectors.

Fig. 5.  The light-output power and forward voltage versus injection current.

Table 1.   Parameters in the calculation for backside reflectors[14].

[1]
Wang C H, Lin D W, Lee C Y, et al. Efficiency and droop improvement in GaN-based high-voltage light-emitting diodes. IEEE Electron Device Lett, 2011, 32(8): 1098 doi: 10.1109/LED.2011.2153176
[2]
Cao Dongxing, Guo Zhiyou, Liang Fubo, et al. The preparation and performance analysis of GaN-based high-voltage DC light emitting diode. Acta Phys Sin, 2012, 61(13): 138502
[3]
Horng R H, Shen K C, Kuo Y W, et al. Effects of cell distance on the performance of GaN high-voltage light emitting diodes. ECS Solid State Lett, 2012, 1(5): R21 doi: 10.1149/2.005205ssl
[4]
Wang Hong, Wu Yuefeng, Zhong Jiongsheng, et al. Fabrication of high-voltage LED chips with lateral columnar structure. Journal of Optoelectron Laser, 2013, 24(6): 1906 http://en.cnki.com.cn/Article_en/CJFDTOTAL-GDZJ201310011.htm
[5]
Ding Yan, Guo Weiling, Zhu Yanxu, et al. Fabrication of high-voltage light emitting diodes with a deep isolation groove structure. Journal of Semiconductors, 2012, 33(9): 094007 doi: 10.1088/1674-4926/33/9/094007
[6]
Guo Weiling, Yan Weiwei, Zhu Yanxu, et al. Analysis on electrical characteristics of high-voltage GaN-based light-emitting diodes. Chinese Physics B, 2012, 21(12): 127201 doi: 10.1088/1674-1056/21/12/127201
[7]
Zhan Teng, Zhang Yang, Li Jing, et al. The design and fabrication of a GaN-based monolithic light-emitting diode array. Journal of Semiconductors. 2013, 34(9): 094010 doi: 10.1088/1674-4926/34/9/094010
[8]
Zhan Teng, Zhang Yang, Ma Jun, et al. Characteristics of GaN-based high-voltage LEDs compared to traditional high power LEDs. IEEE Photonics Technol Lett, 2013, 25(9): 844 doi: 10.1109/LPT.2013.2251878
[9]
Hsu Y P, Chang S J, Su Y K, et al. InGaN/GaN light-emitting diodes with a reflector at the backside of sapphire substrates. J Electron Mater, 2003, 32(5): 403 doi: 10.1007/s11664-003-0166-3
[10]
Chang S J, Shen C F, Hsieh M H, et al. Nitride-based LEDs with a hybrid Al mirror + TiO2/SiO2 DBR backside reflector. J Lightwave Technol, 2008, 26(17): 3131 doi: 10.1109/JLT.2008.923927
[11]
Lin N M, Shei S C, Chang S J. Nitride-based LEDs with high-reflectance and wide-angle Ag mirror SiO2/TiO2 DBR backside reflector. J Lightwave Technol, 2011, 29(7): 1033 doi: 10.1109/JLT.2011.2111416
[12]
Chen Hongjun, Guo Hao, Zhang Peiyuan, et al. Enhanced performance of GaN-based light-emitting diodes by using Al mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector with patterned sapphire substrate. Appl Phys Express, 2013, 6: 022101 doi: 10.7567/APEX.6.022101
[13]
Guo Hao, Chen Hongjun, Zhang Xiong, et al. High-performance GaN-based light-emitting diodes on patterned sapphire substrate with a novel hybrid Ag mirror and atomic layer deposition-TiO2/Al2O3 distributed Bragg reflector backside reflector. Opt Eng, 2013, 52(6): 063402 doi: 10.1117/1.OE.52.6.063402
[14]
[15]
Lee T X, Gao K F, Chien W T, et al. Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate. Opt Express, 2007, 15(11): 6670 doi: 10.1364/OE.15.006670
[16]
Liu Zongyuan, Wang Kai, Luo Xiaobing, et al. Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing. Opt Express, 2010, 18(9): 9398 doi: 10.1364/OE.18.009398
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2259 Times PDF downloads: 45 Times Cited by: 0 Times

    History

    Received: 15 January 2014 Revised: 10 February 2014 Online: Published: 01 July 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Huamao Huang, Hong Wang, Xiaosheng Huang, Jinyong Hu. GaN-based high-voltage light-emitting diodes with backside reflector[J]. Journal of Semiconductors, 2014, 35(7): 074013. doi: 10.1088/1674-4926/35/7/074013 H M Huang, H Wang, X S Huang, J Y Hu. GaN-based high-voltage light-emitting diodes with backside reflector[J]. J. Semicond., 2014, 35(7): 074013. doi: 10.1088/1674-4926/35/7/074013.Export: BibTex EndNote
      Citation:
      Huamao Huang, Hong Wang, Xiaosheng Huang, Jinyong Hu. GaN-based high-voltage light-emitting diodes with backside reflector[J]. Journal of Semiconductors, 2014, 35(7): 074013. doi: 10.1088/1674-4926/35/7/074013

      H M Huang, H Wang, X S Huang, J Y Hu. GaN-based high-voltage light-emitting diodes with backside reflector[J]. J. Semicond., 2014, 35(7): 074013. doi: 10.1088/1674-4926/35/7/074013.
      Export: BibTex EndNote

      GaN-based high-voltage light-emitting diodes with backside reflector

      doi: 10.1088/1674-4926/35/7/074013
      Funds:

      the Strategic Emerging Industry Special funds of Guangdong Province, China 2010A081002009

      the Strategic Emerging Industry Special funds of Guangdong Province, China 2011A081301004

      Project supported by the Strategic Emerging Industry Special funds of Guangdong Province, China (Nos. 2010A081002009, 2011A081301004, 2012A080302003), the Key Technologies R&D Program of Guangzhou City, China (No. 2011Y5-00006), and the Fundamental Research Funds for the Central Universities, China (Nos. 2013ZM093, 2013ZP0017)

      the Fundamental Research Funds for the Central Universities, China 2013ZM093

      the Key Technologies R&D Program of Guangzhou City, China 2011Y5-00006

      the Fundamental Research Funds for the Central Universities, China 2013ZP0017

      the Strategic Emerging Industry Special funds of Guangdong Province, China 2012A080302003

      More Information
      • Corresponding author: Wang Hong, Email:phhwang@scut.edu.cn
      • Received Date: 2014-01-15
      • Revised Date: 2014-02-10
      • Published Date: 2014-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return