SEMICONDUCTOR INTEGRATED CIRCUITS

A broadband regenerative frequency divider in InGaP/GaAs HBT technology

Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Min Liu, Yinghui Zhong and Zheng Shi

+ Author Affiliations

 Corresponding author: Lü Hongliang, Email:hllv@mail.xidian.edu.cn

PDF

Abstract: A dynamic divide-by-two regenerative frequency divider (RFD) is presented in a 60-GHz-fT InGaP/GaAs heterojunction bipolar transistors (HBTs) technology. To achieve high operation bandwidth, active loads instead of resistor loads are incorporated into the RFD. On-wafer measurement shows that the divider is operating from 10 GHz up to at least 40 GHz, limited by the available input frequency. The maximum operation frequency of the divider is found to be much higher than fT/2 of the transistor, and also the divider has excellent input sensitivity. The divider consumes 300.85 mW from 5 V supply and occupies an area of 0.47×0.22 mm2.

Key words: regenerative frequency dividerInGaP/GaAs HBTactive loadsbroadband



[1]
Ma K, Mou S, Yeo K S. A miniaturized millimeter-wave standing-wave filtering switch with high P1dB. IEEE Trans Microw Theory Tech, 2013, 61(4): 1505 doi: 10.1109/TMTT.2013.2250994
[2]
Lee O, Kim J G, Lim K, et al. A 60-GHz push-push InGaP HBT VCO with dynamic frequency divider. IEEE Microw Wireless Compon Lett, 2005, 15(10): 679 doi: 10.1109/LMWC.2005.856847
[3]
Chao Y, Luong H C. Analysis and design of a 2.9-mW 53.4-79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS. IEEE J Solid-State Circuits, 2013, 48(10): 2403 doi: 10.1109/JSSC.2013.2272371
[4]
Wu L, Luong H C. Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting. IEEE Trans Circuits Syst I: Regular Papers, 2013, 60(8): 2001 doi: 10.1109/TCSI.2013.2256240
[5]
Liu G, Schumacher H. Design and comparison of regenerative dynamic frequency dividers in different configurations using SiGe HBT technology. IEEE Microw Wireless Compon Lett, 2013, 23(5): 270 doi: 10.1109/LMWC.2013.2253312
[6]
Nakamura T, Masuda T, Shiramizu N, et al. A 1.1-V regulator-stabilized 21.4-GHz VCO and a 115% frequency-range dynamic divider for K-band wireless communication. IEEE Trans Microw Theory Tech, 2012, 60(9): 2823 doi: 10.1109/TMTT.2012.2206400
[7]
Zhong Yinghui, Su Yongbo, Jin Zhi, et al. An InGaAs/InP W-band dynamic frequency divider. Journal of Infrared and Millimeter Waves, 2012, 31(5): 393 doi: 10.3724/SP.J.1010.2012.00393
[8]
Wei H J, Meng C, Chang Y W, et al. 9.5 GHz GaInP/GaAs HBT divide-by-two frequency divider using super-dynamic D-type flip-flop technique. Electron Lett, 2007, 43(13): 1 http://ieeexplore.ieee.org/document/4263092/?arnumber=4263092&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:4263085)
[9]
Shin H, Won B. A 4.5 to 9.2-GHz wideband semidynamic frequency divide-by-1.5 in GaInP/GaAs HBT. IEEE Microw Wireless Compon Lett, 2007, 17(1): 73 doi: 10.1109/LMWC.2006.887280
[10]
Zhang Jincan, Zhang Yuming, Lu Hongliang, et al. A novel model for implementation of gamma radiation effects in GaAs HBTs. IEEE Trans Microw Theory Tech, 2012, 60(12): 3693 doi: 10.1109/TMTT.2012.2221137
[11]
Vuppala S, Li C S, Zwicknagl P, et al. Neutron, proton, and electron irradiation effects in InGaP/GaAs single heterojunction bipolar transistors. IEEE Trans Nucl Sci, 2003, 50(6): 1846 doi: 10.1109/TNS.2003.820765
Fig. 1.  Principle of the dynamic frequency divider.

Fig. 2.  Block diagram of the dynamic frequency divider.

Fig. 3.  Schematic of the dynamic frequency divider core.

Fig. 4.  Input buffer of the dynamic frequency divider.

Fig. 5.  Microphotograph of the dynamic frequency divider. The padlimited die area is 0.68 × 0.49 mm2, and the circuit area is 0.47 ×0.22 mm2.

Fig. 6.  Measured and simulated input sensitivity curves of the dynamic frequency divider. Maximum frequency is limited by our available instrumentation.

Fig. 7.  Output spectrum of the divider. (a) fin=10 GHz, fout=5 GHz. (b) fin=40 GHz, fout=20 GHz.

Fig. 8.  Phase noise of the divider. (a) fin=10 GHz, fout=5 GHz. (b) fin=40 GHz, fout=20 GHz.

Table 1.   Frequency divider comparison.

[1]
Ma K, Mou S, Yeo K S. A miniaturized millimeter-wave standing-wave filtering switch with high P1dB. IEEE Trans Microw Theory Tech, 2013, 61(4): 1505 doi: 10.1109/TMTT.2013.2250994
[2]
Lee O, Kim J G, Lim K, et al. A 60-GHz push-push InGaP HBT VCO with dynamic frequency divider. IEEE Microw Wireless Compon Lett, 2005, 15(10): 679 doi: 10.1109/LMWC.2005.856847
[3]
Chao Y, Luong H C. Analysis and design of a 2.9-mW 53.4-79.4-GHz frequency-tracking injection-locked frequency divider in 65-nm CMOS. IEEE J Solid-State Circuits, 2013, 48(10): 2403 doi: 10.1109/JSSC.2013.2272371
[4]
Wu L, Luong H C. Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-locked frequency divider with harmonic boosting. IEEE Trans Circuits Syst I: Regular Papers, 2013, 60(8): 2001 doi: 10.1109/TCSI.2013.2256240
[5]
Liu G, Schumacher H. Design and comparison of regenerative dynamic frequency dividers in different configurations using SiGe HBT technology. IEEE Microw Wireless Compon Lett, 2013, 23(5): 270 doi: 10.1109/LMWC.2013.2253312
[6]
Nakamura T, Masuda T, Shiramizu N, et al. A 1.1-V regulator-stabilized 21.4-GHz VCO and a 115% frequency-range dynamic divider for K-band wireless communication. IEEE Trans Microw Theory Tech, 2012, 60(9): 2823 doi: 10.1109/TMTT.2012.2206400
[7]
Zhong Yinghui, Su Yongbo, Jin Zhi, et al. An InGaAs/InP W-band dynamic frequency divider. Journal of Infrared and Millimeter Waves, 2012, 31(5): 393 doi: 10.3724/SP.J.1010.2012.00393
[8]
Wei H J, Meng C, Chang Y W, et al. 9.5 GHz GaInP/GaAs HBT divide-by-two frequency divider using super-dynamic D-type flip-flop technique. Electron Lett, 2007, 43(13): 1 http://ieeexplore.ieee.org/document/4263092/?arnumber=4263092&sortType%3Dasc_p_Sequence%26filter%3DAND(p_IS_Number:4263085)
[9]
Shin H, Won B. A 4.5 to 9.2-GHz wideband semidynamic frequency divide-by-1.5 in GaInP/GaAs HBT. IEEE Microw Wireless Compon Lett, 2007, 17(1): 73 doi: 10.1109/LMWC.2006.887280
[10]
Zhang Jincan, Zhang Yuming, Lu Hongliang, et al. A novel model for implementation of gamma radiation effects in GaAs HBTs. IEEE Trans Microw Theory Tech, 2012, 60(12): 3693 doi: 10.1109/TMTT.2012.2221137
[11]
Vuppala S, Li C S, Zwicknagl P, et al. Neutron, proton, and electron irradiation effects in InGaP/GaAs single heterojunction bipolar transistors. IEEE Trans Nucl Sci, 2003, 50(6): 1846 doi: 10.1109/TNS.2003.820765
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2616 Times PDF downloads: 23 Times Cited by: 0 Times

    History

    Received: 29 October 2013 Revised: 10 February 2014 Online: Published: 01 July 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Min Liu, Yinghui Zhong, Zheng Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology[J]. Journal of Semiconductors, 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004 J C Zhang, Y M Zhang, H Lü, Y M Zhang, M Liu, Y H Zhong, Z Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology[J]. J. Semicond., 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004.Export: BibTex EndNote
      Citation:
      Jincan Zhang, Yuming Zhang, Hongliang Lü, Yimen Zhang, Min Liu, Yinghui Zhong, Zheng Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology[J]. Journal of Semiconductors, 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004

      J C Zhang, Y M Zhang, H Lü, Y M Zhang, M Liu, Y H Zhong, Z Shi. A broadband regenerative frequency divider in InGaP/GaAs HBT technology[J]. J. Semicond., 2014, 35(7): 075004. doi: 10.1088/1674-4926/35/7/075004.
      Export: BibTex EndNote

      A broadband regenerative frequency divider in InGaP/GaAs HBT technology

      doi: 10.1088/1674-4926/35/7/075004
      Funds:

      the Advance Research Foundation of China 9140A08xxxx11DZ111

      the Advance Research Project of China 51308xxxx06

      Project supported by the National Basic Research Program of China (No. 2010CBxxxx05), the Advance Research Project of China (No. 51308xxxx06), and the Advance Research Foundation of China (No. 9140A08xxxx11DZ111)

      the National Basic Research Program of China 2010CBxxxx05

      More Information
      • Corresponding author: Lü Hongliang, Email:hllv@mail.xidian.edu.cn
      • Received Date: 2013-10-29
      • Revised Date: 2014-02-10
      • Published Date: 2014-07-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return