SEMICONDUCTOR DEVICES

Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies

Aritra Acharyya1, , Aliva Mallik2, Debopriya Banerjee2, Suman Ganguli2, Arindam Das2, Sudeepto Dasgupta2 and J.P. Banerjee1

+ Author Affiliations

 Corresponding author: Aritra Acharyya, Email:ari_besu@yahoo.co.in

PDF

Abstract: Large-signal (L-S) characterizations of double-drift region (DDR) impact avalanche transit time (IMPATT) devices based on group Ⅲ-Ⅴ semiconductors such as wurtzite (Wz) GaN, GaAs and InP have been carried out at both millimeter-wave (mm-wave) and terahertz (THz) frequency bands. A L-S simulation technique based on a non-sinusoidal voltage excitation (NSVE) model developed by the authors has been used to obtain the high frequency properties of the above mentioned devices. The effect of band-to-band tunneling on the L-S properties of the device at different mm-wave and THz frequencies are also investigated. Similar studies are also carried out for DDR IMPATTs based on the most popular semiconductor material, i.e. Si, for the sake of comparison. A comparative study of the devices based on conventional semiconductor materials (i.e. GaAs, InP and Si) with those based on Wz-GaN shows significantly better performance capabilities of the latter at both mm-wave and THz frequencies.

Key words: DDR IMPATTsGaNgroup Ⅲ-Ⅴlarge-signal simulationmillimeter-waveterahertz regimewurtzite



[1]
Midford T A, Bernick R L. Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans Microw Theory Tech, 1979, 27:483 doi: 10.1109/TMTT.1979.1129653
[2]
Luy J F, Casel A, Behr W, et al. A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans Electron Devices, 1987, 34:1084 doi: 10.1109/T-ED.1987.23049
[3]
Wollitzer M, Buchler J, Schafflr F, et al. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron Lett, 1996, 32:122 doi: 10.1049/el:19960088
[4]
Adlerstein M G, Chu S L G. GaAs IMPATT diodes for 60 GHz. IEEE Electron Devices Lett, 1984, 5:97 doi: 10.1109/EDL.1984.25844
[5]
Eisele H. Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid-State Electron, 1989, 32(3):253 doi: 10.1016/0038-1101(89)90100-7
[6]
Tschernitz M, Freyer J. 140 GHz GaAs double-read IMPATT diodes. Electron Lett, 1995, 31(7):582 doi: 10.1049/el:19950390
[7]
Eisele H, Chen C C, Munns G O, et al. The potential of InP IMPATT diodes as high-power millimeter-wave sources:first experimental results. IEEE MTT-S International Microwave Symposium Digest, 1996, 2:529 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=510989
[8]
Trew R J, Yan J B, Mock P M. The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE, 1991, 79(5):598 doi: 10.1109/5.90128
[9]
Mock P M, Trew R J. RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. Proc IEEE/Cornell Conf Advanced Concepts in High-Speed Semiconductor Devices and Circuits, 1989:383 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=79856
[10]
Yuan L, James A, Cooper J A, et al. Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Device Lett, 2001, 22:266 doi: 10.1109/55.924837
[11]
Vassilevski K V, Zorenko A V, Zekentes K, et al. 4H-SiC IMPATT diode fabrication and testing. Technical Digest of International Conference on SiC and Related Materials, Tsukuba, Japan, 2001:713 http://www.scientific.net/MSF.389-393.1353
[12]
Acharyya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci, 2014, 4:1 doi: 10.1007/s13204-012-0172-y
[13]
Acharyya A, Banerjee J P. Potentiality of IMPATT devices as terahertz source:an avalanche response time based approach to determine the upper cut-off frequency limits. IETE Journal of Research, 2013, 59(2):118 doi: 10.4103/0377-2063.113029
[14]
Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices, 1969, 6(1):64 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1475609
[15]
Acharyya A, Banerjee S, Banerjee J P. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. Journal of Semiconductors, 2013, 34(2):024001 doi: 10.1088/1674-4926/34/2/024001
[16]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. International Journal of Microwave and Wireless Technologies, 2013, 5(5):567 doi: 10.1017/S1759078713000597
[17]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. Journal of Semiconductors, 2013, 34(10):104003 doi: 10.1088/1674-4926/34/10/104003
[18]
Kane E O. Theory of tunneling. J Appl Phys, 1961, 32:83 doi: 10.1063/1.1735965
[19]
Acharyya A, Mukherjee M, Banerjee J P. Influence of tunnel current on dc and dynamic properties of silicon based terahertz IMPATT source. Terahertz Science and Technology, 2011, 4(1):26 http://www.tstnetwork.org/March2011/tst-v4n1-26Influence.pdf
[20]
Sze S M, Ryder R M. Microwave avalanche diodes. Proc IEEE Special Issue on Microwave Semiconductor Devices, 1971, 59:1140 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1450290
[21]
Kunihiro K, Kasahara K, Takahashi Y, et al. Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett, 1999, 20:608 doi: 10.1109/55.806100
[22]
Ito M, Kagawa S, Kaneda T, et al. Ionization rates for electrons and holes in GaAs. J Appl Phys, 1978, 49:4607 doi: 10.1063/1.325443
[23]
Kao C W, Crowell C R. Impact ionization by electrons and holes in InP. Solid-State Electron, 1980, 23:881 doi: 10.1016/0038-1101(80)90106-9
[24]
Umebu I, Chowdhury A N M M, Robson P N. Ionization coefficients measured in abrupt InP junction. Appl Phys Lett, 1980, 36:302 doi: 10.1063/1.91470
[25]
Grant W N. Electron and hole ionization rates in epitaxial silicon. Solid-State Electron, 1973, 16(10):1189 doi: 10.1016/0038-1101(73)90147-0
[26]
Shiyu S C, Wang G. High-field properties of carrier transport in bulk wurtzite GaN:Monte Carlo perspective. J Appl Phys, 2008, 103:703
[27]
Kramer B, Micrea A. Determination of saturated electron velocity in GaAs. Appl Phys Lett, 1975, 26:623 doi: 10.1063/1.88001
[28]
Canali C, Ottaviani G, Quaranta A A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J Phys Chem Solids, 1971, 32(8):1707 doi: 10.1016/S0022-3697(71)80137-3
[29]
Electronic Archive: New Semiconductor Materials, Characteristics and Properties. 2013, http://www.ioffe.ru/SVA/NSM/Semicond
Fig. 1.  (a) 1-D model of DDR IMPATT device, (b) voltage driven IMPATT diode oscillator and associated circuit.

Fig. 2.  Variations of breakdown voltage and avalanche zone voltage drop in DDR Wz-GaN, GaAs, InP and Si IMPATTs with frequency.

Fig. 3.  Admittance characteristics of DDR IMPATTs under pure both IMPATT and MITATT modes for 50% voltage modulation.

Fig. 4.  Variations of RF power output under both pure IMPATT and MITATT modes of 94 GHz DDR Wz-GaN IMPATTs with RF voltage.

Fig. 5.  Variations of RF power output under both pure IMPATT and MITATT modes of 94 GHz DDR Wz-GaN IMPATTs with RF voltage.

Fig. 6.  Variations of peak avalanche and tunneling generation rates ($q G_{\rm Apeak}$ and $q G_{\rm Tpeak})$ in DDR IMPATTs with frequency.

Fig. 7.  Bar graphs representing the percentage of decrease of RF power output in DDR Si, GaAs, InP and Wz-GaN IMPATTs due to the effect of tunneling.

Fig. 8.  Variations of RF power output with optimum frequency of DDR IMPATTs.

Table 1.   Structural, doping and other parameters.

Table 2.   Static parameters.

Table 3.   L-S Parameters for 50% voltage modulation.

Table 4.   Percentage changes in L-S parameters due to tunneling.

[1]
Midford T A, Bernick R L. Millimeter wave CW IMPATT diodes and oscillators. IEEE Trans Microw Theory Tech, 1979, 27:483 doi: 10.1109/TMTT.1979.1129653
[2]
Luy J F, Casel A, Behr W, et al. A 90-GHz double-drift IMPATT diode made with Si MBE. IEEE Trans Electron Devices, 1987, 34:1084 doi: 10.1109/T-ED.1987.23049
[3]
Wollitzer M, Buchler J, Schafflr F, et al. D-band Si-IMPATT diodes with 300 mW CW output power at 140 GHz. Electron Lett, 1996, 32:122 doi: 10.1049/el:19960088
[4]
Adlerstein M G, Chu S L G. GaAs IMPATT diodes for 60 GHz. IEEE Electron Devices Lett, 1984, 5:97 doi: 10.1109/EDL.1984.25844
[5]
Eisele H. Selective etching technology for 94 GHz, GaAs IMPATT diodes on diamond heat sinks. Solid-State Electron, 1989, 32(3):253 doi: 10.1016/0038-1101(89)90100-7
[6]
Tschernitz M, Freyer J. 140 GHz GaAs double-read IMPATT diodes. Electron Lett, 1995, 31(7):582 doi: 10.1049/el:19950390
[7]
Eisele H, Chen C C, Munns G O, et al. The potential of InP IMPATT diodes as high-power millimeter-wave sources:first experimental results. IEEE MTT-S International Microwave Symposium Digest, 1996, 2:529 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=510989
[8]
Trew R J, Yan J B, Mock P M. The potentiality of diamond and SiC electronic devices for microwave and millimeter-wave power applications. Proc IEEE, 1991, 79(5):598 doi: 10.1109/5.90128
[9]
Mock P M, Trew R J. RF performance characteristics of double-drift MM-wave diamond IMPATT diodes. Proc IEEE/Cornell Conf Advanced Concepts in High-Speed Semiconductor Devices and Circuits, 1989:383 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=79856
[10]
Yuan L, James A, Cooper J A, et al. Experimental demonstration of a silicon carbide IMPATT oscillator. IEEE Electron Device Lett, 2001, 22:266 doi: 10.1109/55.924837
[11]
Vassilevski K V, Zorenko A V, Zekentes K, et al. 4H-SiC IMPATT diode fabrication and testing. Technical Digest of International Conference on SiC and Related Materials, Tsukuba, Japan, 2001:713 http://www.scientific.net/MSF.389-393.1353
[12]
Acharyya A, Banerjee J P. Prospects of IMPATT devices based on wide bandgap semiconductors as potential terahertz sources. Appl Nanosci, 2014, 4:1 doi: 10.1007/s13204-012-0172-y
[13]
Acharyya A, Banerjee J P. Potentiality of IMPATT devices as terahertz source:an avalanche response time based approach to determine the upper cut-off frequency limits. IETE Journal of Research, 2013, 59(2):118 doi: 10.4103/0377-2063.113029
[14]
Scharfetter D L, Gummel H K. Large-signal analysis of a silicon read diode oscillator. IEEE Trans Electron Devices, 1969, 6(1):64 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1475609
[15]
Acharyya A, Banerjee S, Banerjee J P. Effect of junction temperature on the large-signal properties of a 94 GHz silicon based double-drift region impact avalanche transit time device. Journal of Semiconductors, 2013, 34(2):024001 doi: 10.1088/1674-4926/34/2/024001
[16]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating up to 0.5 THz. International Journal of Microwave and Wireless Technologies, 2013, 5(5):567 doi: 10.1017/S1759078713000597
[17]
Acharyya A, Chakraborty J, Das K, et al. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. Journal of Semiconductors, 2013, 34(10):104003 doi: 10.1088/1674-4926/34/10/104003
[18]
Kane E O. Theory of tunneling. J Appl Phys, 1961, 32:83 doi: 10.1063/1.1735965
[19]
Acharyya A, Mukherjee M, Banerjee J P. Influence of tunnel current on dc and dynamic properties of silicon based terahertz IMPATT source. Terahertz Science and Technology, 2011, 4(1):26 http://www.tstnetwork.org/March2011/tst-v4n1-26Influence.pdf
[20]
Sze S M, Ryder R M. Microwave avalanche diodes. Proc IEEE Special Issue on Microwave Semiconductor Devices, 1971, 59:1140 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1450290
[21]
Kunihiro K, Kasahara K, Takahashi Y, et al. Experimental evaluation of impact ionization coefficients in GaN. IEEE Electron Device Lett, 1999, 20:608 doi: 10.1109/55.806100
[22]
Ito M, Kagawa S, Kaneda T, et al. Ionization rates for electrons and holes in GaAs. J Appl Phys, 1978, 49:4607 doi: 10.1063/1.325443
[23]
Kao C W, Crowell C R. Impact ionization by electrons and holes in InP. Solid-State Electron, 1980, 23:881 doi: 10.1016/0038-1101(80)90106-9
[24]
Umebu I, Chowdhury A N M M, Robson P N. Ionization coefficients measured in abrupt InP junction. Appl Phys Lett, 1980, 36:302 doi: 10.1063/1.91470
[25]
Grant W N. Electron and hole ionization rates in epitaxial silicon. Solid-State Electron, 1973, 16(10):1189 doi: 10.1016/0038-1101(73)90147-0
[26]
Shiyu S C, Wang G. High-field properties of carrier transport in bulk wurtzite GaN:Monte Carlo perspective. J Appl Phys, 2008, 103:703
[27]
Kramer B, Micrea A. Determination of saturated electron velocity in GaAs. Appl Phys Lett, 1975, 26:623 doi: 10.1063/1.88001
[28]
Canali C, Ottaviani G, Quaranta A A. Drift velocity of electrons and holes and associated anisotropic effects in silicon. J Phys Chem Solids, 1971, 32(8):1707 doi: 10.1016/S0022-3697(71)80137-3
[29]
Electronic Archive: New Semiconductor Materials, Characteristics and Properties. 2013, http://www.ioffe.ru/SVA/NSM/Semicond
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2268 Times PDF downloads: 12 Times Cited by: 0 Times

    History

    Received: 08 January 2014 Revised: Online: Published: 01 August 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepto Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies[J]. Journal of Semiconductors, 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003 A Acharyya, A Mallik, D Banerjee, S Ganguli, A Das, S Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies[J]. J. Semicond., 2014, 35(8): 084003. doi:  10.1088/1674-4926/35/8/084003.Export: BibTex EndNote
      Citation:
      Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, Sudeepto Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies[J]. Journal of Semiconductors, 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003

      A Acharyya, A Mallik, D Banerjee, S Ganguli, A Das, S Dasgupta, J.P. Banerjee. Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies[J]. J. Semicond., 2014, 35(8): 084003. doi:  10.1088/1674-4926/35/8/084003.
      Export: BibTex EndNote

      Large-signal characterizations of DDR IMPATT devices based on group Ⅲ-Ⅴ semiconductors at millimeter-wave and terahertz frequencies

      doi: 10.1088/1674-4926/35/8/084003
      More Information
      • Corresponding author: Aritra Acharyya, Email:ari_besu@yahoo.co.in
      • Received Date: 2014-01-08
      • Published Date: 2014-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return