SEMICONDUCTOR DEVICES

A novel double trench reverse conducting IGBT with robust freewheeling switch

Liheng Zhu and Xingbi Chen

+ Author Affiliations

 Corresponding author: Zhu Liheng, Email:zhu_li_heng@163.com

PDF

Abstract: The phenomenon that the wide P-emitter region in the conventional reverse conducting insulated gate bipolar transistor (RC-IGBT) results in the non-uniform current distribution in the integrated freewheeling diode (FWD), and then causes a parasitic thyristor to latch-up during its reverse-recovery process, which induces a hot spot in the local region of the device is revealed for the first time. Furthermore, a novel RC-IGBT based on double trench IGBT is proposed. It not only solves the snapback problem but also has uniform current distribution and high ruggedness during the reverse-recovery process.

Key words: reverse conducting insulated gate bipolar transistorsnapbackcurrent concentration



[1]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). Proc EPE, 2009:1 http://ieeexplore.ieee.org/document/5279012/
[2]
Donnellan B T, Mawby P A, Rahimo M, et al. Introducing a 1200 V vertical merged IGBT and power MOSFET:the HUBFET. APEC, 2012:152
[3]
Minato T, Aono S, Uryu K, et al. Making a bridge from SJ-MOSFET to IGBT via RC-IGBT structure concept for 600 V class SJ-RC-IGBT in a single chip solution. Proc ISPSD, 2012:137 http://ieeexplore.ieee.org/document/6229042/
[4]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. The snap-back effect of an RC-IGBT and its simulations. Jounal of Semiconductors, 2013, 34(7):034007 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bdtx201307019&dbname=CJFD&dbcode=CJFQ
[5]
Zhu Liheng, Chen Xingbi. Novel reverse conducting insulated gate bipolar transistor with anti-parallel MOS controlled thyristor. Jounal of Semiconductors, 2014, 35(7): http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bdtx201407010&dbname=CJFD&dbcode=CJFQ
[6]
Nishii A, Nakamura K, Masuoka F, et al. Relaxation of current filament due to RFC technology and ballast resistor for robust FWD operation. Proc ISPSD, 2011:96 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5890799
[7]
Zhu L, Chen X. A novel snapback-free reverse conducting IGBT with anti-parallel Shockley diode. 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2013:261 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6694436
[8]
Huang Q, Amaratunga G. Analysis of double trench insulated gate bipolar transistor. Solid-State Electron, 1995, 38(4):829 doi: 10.1016/0038-1101(94)00110-2
[9]
Voss S, Niedernostheide F, Schulze H. Anode design variation in 1200-V trench field-stop reverse-conducting IGBTs. Proc ISPSD, 2008:169 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4538925
[10]
Mori M, Oyama K, Kohno Y, et al. A trench-gate high-conductivity IGBT (HiGT) with short-circuit capability. IEEE Trans Electron Devices, 2007, ED-54:2011 http://ieeexplore.ieee.org/document/4277969/
[11]
MEDICI. Two Dimensional Device Simulation Program, ed. 2002. 2. 0, Synopsys Inc. , Fremont, CA, 2002
Fig. 1.  Schematic cross sections of (a) the conventional and (b) the novel RC-IGBT. In (b), the equivalent circuits of the anode-NMOS are also shown.

Fig. 2.  Current flow line of the DT-RC-IGBT on the (a) forward and (b) reverse conduction states.

Fig. 3.  Output performances of the conventional and the novel RC-IGBT at 300 K.

Fig. 4.  The reverse-recovery current waveforms of the two RC-IGBTs. $T$ $=$ 400 K. $V_{\rm bus}$ $=$ 600 V, $J_{\rm f}$ $=$ 300 A/cm$^{2}$, initial d$J_{\rm f}$/d$t$ $=$ 2000 A/$\mu $s$\cdot $cm$^{2}$, $t_{1}$ $=$ 1 $\times $ 10$^{-7}$ s, $t_{2}$ $=$ 1.7 $\times $ 10$^{-7}$ s.

Fig. 5.  The hole concentration and the current density distributions of the conventional RC-IGBT on the cut line of $y$ $=$ 4 $\mu $m at the time point of $t_{1}$ $=$ 1 $\times $ 10$^{-7}$ s; at this time, the two RC-IGBT operate in the reverse conduction states.

Fig. 6.  The current and the temperature distributions of the conventional RC-IGBT on the cut line of $y$ $=$ 4 $\mu $m at the time point of $t_{2}$ $=$ 1.7 $\times$ 10$^{-7}$ s; at this time, the maximum lattice temperature of the conventional RC-IGBT exceeds 800 K.

Fig. 7.  The reverse-recovery current waveforms of the DT-RC-IGBTs. $T$ $=$ 400 K. $V_{\rm bus}$ $=$ 600 V, $J_{\rm f}$ $=$ 700 A/cm$^{2}$, initial d$J_{\rm f}$/d$t$ $=$ 2000 A/$\mu $s$\cdot $cm$^{2}$.

Table 1.   Device specifications.

[1]
Rahimo M, Schlapbach U, Schnell R, et al. Realization of higher output power capability with the bi-mode insulated gate transistor (BIGT). Proc EPE, 2009:1 http://ieeexplore.ieee.org/document/5279012/
[2]
Donnellan B T, Mawby P A, Rahimo M, et al. Introducing a 1200 V vertical merged IGBT and power MOSFET:the HUBFET. APEC, 2012:152
[3]
Minato T, Aono S, Uryu K, et al. Making a bridge from SJ-MOSFET to IGBT via RC-IGBT structure concept for 600 V class SJ-RC-IGBT in a single chip solution. Proc ISPSD, 2012:137 http://ieeexplore.ieee.org/document/6229042/
[4]
Zhang Wenliang, Tian Xiaoli, Tan Jingfei, et al. The snap-back effect of an RC-IGBT and its simulations. Jounal of Semiconductors, 2013, 34(7):034007 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bdtx201307019&dbname=CJFD&dbcode=CJFQ
[5]
Zhu Liheng, Chen Xingbi. Novel reverse conducting insulated gate bipolar transistor with anti-parallel MOS controlled thyristor. Jounal of Semiconductors, 2014, 35(7): http://kns.cnki.net/KCMS/detail/detail.aspx?filename=bdtx201407010&dbname=CJFD&dbcode=CJFQ
[6]
Nishii A, Nakamura K, Masuoka F, et al. Relaxation of current filament due to RFC technology and ballast resistor for robust FWD operation. Proc ISPSD, 2011:96 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5890799
[7]
Zhu L, Chen X. A novel snapback-free reverse conducting IGBT with anti-parallel Shockley diode. 25th International Symposium on Power Semiconductor Devices and ICs (ISPSD), 2013:261 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=6694436
[8]
Huang Q, Amaratunga G. Analysis of double trench insulated gate bipolar transistor. Solid-State Electron, 1995, 38(4):829 doi: 10.1016/0038-1101(94)00110-2
[9]
Voss S, Niedernostheide F, Schulze H. Anode design variation in 1200-V trench field-stop reverse-conducting IGBTs. Proc ISPSD, 2008:169 http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=4538925
[10]
Mori M, Oyama K, Kohno Y, et al. A trench-gate high-conductivity IGBT (HiGT) with short-circuit capability. IEEE Trans Electron Devices, 2007, ED-54:2011 http://ieeexplore.ieee.org/document/4277969/
[11]
MEDICI. Two Dimensional Device Simulation Program, ed. 2002. 2. 0, Synopsys Inc. , Fremont, CA, 2002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2483 Times PDF downloads: 33 Times Cited by: 0 Times

    History

    Received: 31 October 2013 Revised: 23 December 2013 Online: Published: 01 August 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Liheng Zhu, Xingbi Chen. A novel double trench reverse conducting IGBT with robust freewheeling switch[J]. Journal of Semiconductors, 2014, 35(8): 084004. doi: 10.1088/1674-4926/35/8/084004 L H Zhu, X B Chen. A novel double trench reverse conducting IGBT with robust freewheeling switch[J]. J. Semicond., 2014, 35(8): 084004. doi: 10.1088/1674-4926/35/8/084004.Export: BibTex EndNote
      Citation:
      Liheng Zhu, Xingbi Chen. A novel double trench reverse conducting IGBT with robust freewheeling switch[J]. Journal of Semiconductors, 2014, 35(8): 084004. doi: 10.1088/1674-4926/35/8/084004

      L H Zhu, X B Chen. A novel double trench reverse conducting IGBT with robust freewheeling switch[J]. J. Semicond., 2014, 35(8): 084004. doi: 10.1088/1674-4926/35/8/084004.
      Export: BibTex EndNote

      A novel double trench reverse conducting IGBT with robust freewheeling switch

      doi: 10.1088/1674-4926/35/8/084004
      Funds:

      the Fundamental Research Funds for the Central Universities E022050205

      the National Natural Science Foundation of China 51237001

      Project supported by the National Natural Science Foundation of China (No. 51237001) and the Fundamental Research Funds for the Central Universities (No. E022050205)

      More Information
      • Corresponding author: Zhu Liheng, Email:zhu_li_heng@163.com
      • Received Date: 2013-10-31
      • Revised Date: 2013-12-23
      • Published Date: 2014-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return