SEMICONDUCTOR PHYSICS

The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals

Jing Ju, Yuqin Zhou and Gangqiang Dong

+ Author Affiliations

 Corresponding author: Zhou Yuqin, Email:yqzhou@ucas.ac.cn

PDF

Abstract: We studied the infrared transmission properties of gold films on ordered two-dimensional non-close-packed polystyrene (PS) colloidal crystal. The gold films consist of gold half-shells on the PS spheres and gold film with 2D arrays of holes on the glass substrate. An extraordinary optical transmission phenomenon could be found in such a structure. Simulations with the finite-difference time-domain method were also employed to get the transmission spectra and electric field distribution. The transmission response of the samples can be adjusted by controlling the thickness of the gold films. Angle-resolved measurements were performed using polarized light to obtain more information about the surface plasmon polariton resonances of the gold films. As the angle changes, the transmission spectra change a lot. The transmission spectra of p-polarized light have quite different properties compared to those of s-polarized light.

Key words: SPPextraordinary optical transmissionnon-close-packed colloidal crystalpolarized light



[1]
Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391:667 doi: 10.1038/35570
[2]
Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett, 2001, 86:1114 doi: 10.1103/PhysRevLett.86.1114
[3]
Bravo-Abad J, Degiron A, Przybilla F, et al. How light emerges from an illuminated array of subwavelength holes. Nature Phys, 2006, 2:120 doi: 10.1038/nphys213
[4]
Miyamaru F, Kamijyo M, Takano K, et al. Characteristics and generation process of surface waves excited on a perfect conductor surface. Opt Express, 2010, 18(16):17576 doi: 10.1364/OE.18.017576
[5]
Degiron A, Lezec H J, Barnes W L, et al. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl Phys Lett, 2002, 81:4327 doi: 10.1063/1.1526162
[6]
Kim T J, Thio T, Ebbesen T W, et al. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt Lett, 1999, 24:256 doi: 10.1364/OL.24.000256
[7]
Zhan P, Wang Z L, Dong H, et al. The anomalous infrared transmission of gold films on two-dimensional colloidal crystals. Adv Mater, 2006, 18:1612 doi: 10.1002/(ISSN)1521-4095
[8]
Wang Z B, Ye Y H, Zhang Y A, et al. Visible transmission through metal-coated colloidal crystals. Appl Phys A, 2009, 97:225 doi: 10.1007/s00339-009-5184-4
[9]
Cai Z Y, Liu Y J, Leong E S P. Highly ordered and gap controllable two-dimensional non-close-packed colloidal crystals and plasmonic-photonic crystals with enhanced optical transmission. J Mater Chem, 2012, 22:24668 doi: 10.1039/c2jm34896a
[10]
Farcau C, Giloan M, Vinteler E, et al. Understanding plasmon resonances of metal-coated colloidal crystal monolayers. Appl Phys B, 2012, 106:849 doi: 10.1007/s00340-011-4849-9
[11]
Endo T, Takizawa H, Imai Y, et al. Study of electrical field distribution of gold-capped nanoparticle for excitation of localized surface plasmon resonance. Appl Surf Sci, 2011, 257:2560 doi: 10.1016/j.apsusc.2010.10.022
[12]
Haynes C L, Van Duyne R P. Nanosphere lithography:a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B, 2001, 105:5599 doi: 10.1021/jp010657m
[13]
Walsh G F, Negro L D. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles. Nano Lett, 2013, 13:786 doi: 10.1021/nl304523v
[14]
Bhattacharya J, Chakravarty N, Pattnaik S, et al. Comparison of optical properties of periodic photonic-plasmonic and randomly textured back reflectors for nc-Si solar cells. Journal of Non-Crystalline Solids, 2012, 358:2313 doi: 10.1016/j.jnoncrysol.2011.12.108
[15]
Ferry V E, Verschuuren M A, Li H B T, et al. Light trapping in ultrathin plasmonic solar cells. Opt Express, 2010, 18(S2):A237 doi: 10.1364/OE.18.00A237
[16]
Pan F, Zhang J Y, Cai C, et al. Rapid fabrication of large-area colloidal crystal monolayers by a vertical surface method. Langmuir, 2006, 22(17):7101 doi: 10.1021/la053323n
[17]
Ghaemi H F, Thio T, Grupp D E. Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B, 1998, 58(11):6779 doi: 10.1103/PhysRevB.58.6779
[18]
Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography:tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B, 2000, 104:10549 doi: 10.1021/jp002435e
[19]
Rather H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin:Springer, 1988
Fig. 1.  Schematic representation of the sample fabrication and the SEM picture of the sample.

Fig. 2.  (a)SEM image of a hexagonal 2D non-close-packed colloidalcrystal monolayer coated with gold film.(b)Transmission spectra for:a structured gold film with a thickness of 20 nm(curve 1);bare nonclose-packed colloidal crystal monolayer(curve 2)

Fig. 3.  Transmission dependence on the thicknesses of gold films

Fig. 4.  (a)Scheme of the simulated periodic structure, the dotted line marks the cross-section in which the electric fields are analyzed.(b)Simulated transmission spectrum of 20 nm gold film(curve 1) and measured transmission spectrum(curve 2)

Fig. 5.  Electric field intensity in the xz cross-section at (a) transmission maximum wavelength and (b) transmission minimum wavelength

Fig. 6.  (Color online)Transmission spectra of the 30 nm thick sample as a function of incident angle.Spectra are taken in steps of 4ı from 0 to28ı for(a)s-polarization and(b)p-polarization

[1]
Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391:667 doi: 10.1038/35570
[2]
Martín-Moreno L, García-Vidal F J, Lezec H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett, 2001, 86:1114 doi: 10.1103/PhysRevLett.86.1114
[3]
Bravo-Abad J, Degiron A, Przybilla F, et al. How light emerges from an illuminated array of subwavelength holes. Nature Phys, 2006, 2:120 doi: 10.1038/nphys213
[4]
Miyamaru F, Kamijyo M, Takano K, et al. Characteristics and generation process of surface waves excited on a perfect conductor surface. Opt Express, 2010, 18(16):17576 doi: 10.1364/OE.18.017576
[5]
Degiron A, Lezec H J, Barnes W L, et al. Effects of hole depth on enhanced light transmission through subwavelength hole arrays. Appl Phys Lett, 2002, 81:4327 doi: 10.1063/1.1526162
[6]
Kim T J, Thio T, Ebbesen T W, et al. Control of optical transmission through metals perforated with subwavelength hole arrays. Opt Lett, 1999, 24:256 doi: 10.1364/OL.24.000256
[7]
Zhan P, Wang Z L, Dong H, et al. The anomalous infrared transmission of gold films on two-dimensional colloidal crystals. Adv Mater, 2006, 18:1612 doi: 10.1002/(ISSN)1521-4095
[8]
Wang Z B, Ye Y H, Zhang Y A, et al. Visible transmission through metal-coated colloidal crystals. Appl Phys A, 2009, 97:225 doi: 10.1007/s00339-009-5184-4
[9]
Cai Z Y, Liu Y J, Leong E S P. Highly ordered and gap controllable two-dimensional non-close-packed colloidal crystals and plasmonic-photonic crystals with enhanced optical transmission. J Mater Chem, 2012, 22:24668 doi: 10.1039/c2jm34896a
[10]
Farcau C, Giloan M, Vinteler E, et al. Understanding plasmon resonances of metal-coated colloidal crystal monolayers. Appl Phys B, 2012, 106:849 doi: 10.1007/s00340-011-4849-9
[11]
Endo T, Takizawa H, Imai Y, et al. Study of electrical field distribution of gold-capped nanoparticle for excitation of localized surface plasmon resonance. Appl Surf Sci, 2011, 257:2560 doi: 10.1016/j.apsusc.2010.10.022
[12]
Haynes C L, Van Duyne R P. Nanosphere lithography:a versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J Phys Chem B, 2001, 105:5599 doi: 10.1021/jp010657m
[13]
Walsh G F, Negro L D. Engineering plasmon-enhanced Au light emission with planar arrays of nanoparticles. Nano Lett, 2013, 13:786 doi: 10.1021/nl304523v
[14]
Bhattacharya J, Chakravarty N, Pattnaik S, et al. Comparison of optical properties of periodic photonic-plasmonic and randomly textured back reflectors for nc-Si solar cells. Journal of Non-Crystalline Solids, 2012, 358:2313 doi: 10.1016/j.jnoncrysol.2011.12.108
[15]
Ferry V E, Verschuuren M A, Li H B T, et al. Light trapping in ultrathin plasmonic solar cells. Opt Express, 2010, 18(S2):A237 doi: 10.1364/OE.18.00A237
[16]
Pan F, Zhang J Y, Cai C, et al. Rapid fabrication of large-area colloidal crystal monolayers by a vertical surface method. Langmuir, 2006, 22(17):7101 doi: 10.1021/la053323n
[17]
Ghaemi H F, Thio T, Grupp D E. Surface plasmons enhance optical transmission through subwavelength holes. Phys Rev B, 1998, 58(11):6779 doi: 10.1103/PhysRevB.58.6779
[18]
Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography:tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B, 2000, 104:10549 doi: 10.1021/jp002435e
[19]
Rather H. Surface plasmons on smooth and rough surfaces and on gratings. Berlin:Springer, 1988
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2610 Times PDF downloads: 47 Times Cited by: 0 Times

    History

    Received: 21 February 2014 Revised: 08 April 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jing Ju, Yuqin Zhou, Gangqiang Dong. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals[J]. Journal of Semiconductors, 2014, 35(9): 092001. doi: 10.1088/1674-4926/35/9/092001 J Ju, Y Q Zhou, G Q Dong. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals[J]. J. Semicond., 2014, 35(9): 092001. doi: 10.1088/1674-4926/35/9/092001.Export: BibTex EndNote
      Citation:
      Jing Ju, Yuqin Zhou, Gangqiang Dong. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals[J]. Journal of Semiconductors, 2014, 35(9): 092001. doi: 10.1088/1674-4926/35/9/092001

      J Ju, Y Q Zhou, G Q Dong. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals[J]. J. Semicond., 2014, 35(9): 092001. doi: 10.1088/1674-4926/35/9/092001.
      Export: BibTex EndNote

      The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals

      doi: 10.1088/1674-4926/35/9/092001
      More Information
      • Corresponding author: Zhou Yuqin, Email:yqzhou@ucas.ac.cn
      • Received Date: 2014-02-21
      • Revised Date: 2014-04-08
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return