SEMICONDUCTOR DEVICES

Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor

Xiaofeng Zhao, Dianzhong Wen, Meiwei Lü, Hanyu Guan and Gang Liu

+ Author Affiliations

 Corresponding author: Wen Dianzhong, Email:wendianzhong@hlju.edu.cn

PDF

Abstract: A split-drain magnetic field-effect transistor (MAGFET) based on a nano-polysilicon thin film transistor (TFT) is proposed, which contains one source, two drains and one gate. The sensor chips were fabricated on < 100angle high resistivity silicon substrate by CMOS technology. When drain-source voltage equals 5.0 V and length and width ratio of the TFT channel is 80 μm/160 μm, the current and voltage magnetic sensitivities of the split-drain MAGFET based on the TFT are 0.018 mA/T and 55 mV/T, respectively. Through adopting nano-polysilicon thin films and nano-polysilicon thin films/high resistivity silicon heterojunction interfaces as the magnetic sensing layers, it is possible to realize detection of the external magnetic field. The test results show that magnetic sensitivity of the split-drain MAGFET can be improved significantly.

Key words: nano-polysilicon thin filmsthin film transistorsplit-drain MAGFETCMOS technologyheterojunction interfaces



[1]
Gallagher R C, Corak W S. A metal-oxide-semiconductor (MOS) Hall element. Solid-State Electron, 1966, 9:571 doi: 10.1016/0038-1101(66)90172-9
[2]
Sung G M. Error correction for transformed concave and convex MAGFETs with DC supply voltage. Sensors and Actuators A:Physical, 2005, 117(1):41 doi: 10.1016/j.sna.2004.04.053
[3]
Yao Yunruo, Zhu Dazhong. Sector split-drain MAGFET structure and model based on standard CMOS technology. Chinese Journal of Semiconductors, 2005, 26(4):751(in Chinese) http://ieeexplore.ieee.org/document/1435162/authors
[4]
Yao Y, Zhu D, Guo Q. Sector split-drain magnetic field-effect transistor based on standard CMOS technology. Sensors and Actuators A:Physical, 2005, 121(2):347 doi: 10.1016/j.sna.2005.02.029
[5]
Guo Q, Zhu D, Yao Y. CMOS magnetic sensor integrated circuit with sectorial MAGFET. Sensors and Actuators A:Physical, 2006, 126(1):154 doi: 10.1016/j.sna.2005.10.004
[6]
Liu Tong, Zhu Dazhong. Relative sensitivity of sector split-drain magnetic field-effect transistor based on geometrical correction factor of sector Hall plate. Chinese Journal of Semiconductors, 2006, 27(12):2155(in Chinese) http://ieeexplore.ieee.org/document/4098379/
[7]
Chen S L, Kuo C H, Liu S I. CMOS magnetic field to frequency converter. IEEE Sensors Journal, 2003, 3(2):241 doi: 10.1109/JSEN.2002.807485
[8]
Santillan-Quiñonez G F, Champac V, Murphy R S. Exploiting magnetic sensing capabilities of short split-drain MAGFETs. Solid-State Electron, 2010, 54:1239 doi: 10.1016/j.sse.2010.06.016
[9]
Hasan S M R. A novel 0.7 V high sensitivity complementary differential MAGFET sensor for contactless mechatronic applications. Sensors and Actuators A:Physical, 2010, 163(1):138 doi: 10.1016/j.sna.2010.08.009
[10]
Zhao Xiaofeng, Wen Dianzhong. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET. Journal of Semiconductors, 2009, 30(11):114002 doi: 10.1088/1674-4926/30/11/114002
[11]
Wei W, Wang T, He Y, et al. Investigation on high mobility nanocrystalline Si with crystalline Si heterostructure. Superlattices and Microstructures, 2007, 41(4):216 doi: 10.1016/j.spmi.2006.12.002
[12]
Wei Wensheng. Detection of carrier information in heterojunctions of nanocrystalline/crystalline Si. Solid State Sci, 2010, (12):789 http://www.sciencedirect.com/science/article/pii/S1293255810000828
[13]
Chen X Y, Sheng W Z, He Y L. Enhancement of electron mobility in nanocrystalline silicon/crystalline silicon heterostructures. J App Phys, 2005, (97):024305 doi: 10.1063/1.1832752
[14]
Chuai Rongyan, Wang Jian, Wu Meile, et al. A tunneling piezoresistive model for polysilicon. Journal of Semiconductors, 2012, 33(9):092003 doi: 10.1088/1674-4926/33/9/092003
[15]
Bihan F L, Carvou E, Fortin B, et al. Realization of polycrystalline silicon magnetic sensors. Sensors and Actuators A:Physical, 2001, 88(2):133 doi: 10.1016/S0924-4247(00)00506-9
[16]
Carvou E, Bihan F L, Bonnaud O. Hall effect magnetic sensors based on polysilicon TFTs. IEEE Sensors Journal, 2004, 4(5):597 doi: 10.1109/JSEN.2004.833497
[17]
Yamaguchi Y, Hashimoto H, Kimura M, et al. Magnetic-field area sensor using poly-Si micro Hall devices. IEEE Electron Device Lett, 2010, 31(11):1260 doi: 10.1109/LED.2010.2068271
[18]
Kimura M, Yamaguchi Y, Hashimoto H, et al. Analysis of Hall voltage in micro poly-Si Hall cells. Electrochem Solid-State Lett, 2010, 13(8):J96 doi: 10.1149/1.3436663
[19]
Zhao Xiaofeng, Wen Dianzhong, Zhuang Cuicui, et al. Fabrication and characteristics of the magnetic field sensors based on nano-polysilicon thin-film transistors. Journal of Semiconductors, 2013, 34(3):036001 doi: 10.1088/1674-4926/34/3/036001
[20]
Zhao Xiaofeng, Wen Dianzhong, Zhuang Cuicui, et al. High sensitivity magnetic field sensors based on nano-polysilicon thin-film transistors. Chinese Physics Letters, 2012, 29(11):118501 doi: 10.1088/0256-307X/29/11/118501
Fig. 1.  Basic structure of the split-drain MAGFET based on nanopolysilicon TFT.

Fig. 2.  Operation principle of the split-drain MAGFET based on the nano-polysilicon TFT. (a) $B = 0{\text{T}}{\text{.(b)}}\; {B}\; > \; 0{\text{T}}{\text{.(c)}}\; {B}\; < 0{\text{T}}$

Fig. 3.  Test principle of magnetic characteristics of the split-drain MAGFET based on the nano-polysilicon TFT. (a) Test principle of ${{I}_{\text{D}}}$ and B. (b) Test principle of $\Delta {{V}_{{\text{out}}}}$ and B.

Fig. 4.  Fabrication processes of the split-drain MAGFET based on the nano-polysilicon TFT.

Fig. 5.  Chip photographs of the split-drain MAGFET based on the nano-polysilicon TFT. (a) $L{\text{/}}W = 80\mu {\text{m/}}160\mu {\text{m}}$. (b) $L{\text{/}}W = 160\mu {\text{m/}}160\mu {\text{m}}$. (c) $L{\text{/}}W = 320\mu {\text{m/}}160\mu {\text{m}}$. (d) $L{\text{/}}W = 640\mu {\text{m/}}160\mu {\text{m}}$

Fig. 6.  XRD spectra of the nano-polysilicon thin films.

Fig. 7.  The SEM images of as-deposited nano-polysilicon thin films.

Fig. 8.  ${I_{{\mathbf{DS}}}}$${V_{{\mathbf{DS}}}}$ characteristic curves of the split-drain MAGFET based on the nano-polysilicon TFT. (a) ${I_{{\mathbf{DS1}}}}$${V_{{\mathbf{DS}}}}$. (b) ${I_{{\mathbf{DS2}}}}$${V_{{\mathbf{DS}}}}$.

Fig. 9.  ${I_{{\mathbf{DS1}}}}$${V_{{\mathbf{DS}}}}$ characteristic curves of the split-drain MAGFET based on the nano-polysilicon TFT with different ratios of length and width.

Fig. 10.  Relation curves of $\Delta {I_{\text{D}}}$ and B of the split-drain MAGFET based on the nano-polysilicon TFT. (a) $L{\text{/}}W = 80\mu {\text{m/}}160\mu {\text{m}}$. (b) $L{\text{/}}W = 160\mu {\text{m/}}160\mu {\text{m}}$. (c) $L{\text{/}}W = 320\mu {\text{m/}}160\mu {\text{m}}$. (d) $L{\text{/}}W = 640\mu {\text{m/}}160\mu {\text{m}}$.

Fig. 11.  Relation curves of $\Delta {V_{{\text{out}}}}$ and B of the split-drain MAGFET based on the nano-polysilicon TFT. (a) $L{\text{/}}W = 80\mu {\text{m/}}160\mu {\text{m}}$. (b) $L{\text{/}}W = 160\mu {\text{m/}}160\mu {\text{m}}$. (c) $L{\text{/}}W = 320\mu {\text{m/}}160\mu {\text{m}}$. (d) $L{\text{/}}W = 640\mu {\text{m/}}160\mu {\text{m}}$

Table 1.   Magnetic sensitivities of current and voltage of the split-drain MAGFET based on the nano-polysilicon TFT

[1]
Gallagher R C, Corak W S. A metal-oxide-semiconductor (MOS) Hall element. Solid-State Electron, 1966, 9:571 doi: 10.1016/0038-1101(66)90172-9
[2]
Sung G M. Error correction for transformed concave and convex MAGFETs with DC supply voltage. Sensors and Actuators A:Physical, 2005, 117(1):41 doi: 10.1016/j.sna.2004.04.053
[3]
Yao Yunruo, Zhu Dazhong. Sector split-drain MAGFET structure and model based on standard CMOS technology. Chinese Journal of Semiconductors, 2005, 26(4):751(in Chinese) http://ieeexplore.ieee.org/document/1435162/authors
[4]
Yao Y, Zhu D, Guo Q. Sector split-drain magnetic field-effect transistor based on standard CMOS technology. Sensors and Actuators A:Physical, 2005, 121(2):347 doi: 10.1016/j.sna.2005.02.029
[5]
Guo Q, Zhu D, Yao Y. CMOS magnetic sensor integrated circuit with sectorial MAGFET. Sensors and Actuators A:Physical, 2006, 126(1):154 doi: 10.1016/j.sna.2005.10.004
[6]
Liu Tong, Zhu Dazhong. Relative sensitivity of sector split-drain magnetic field-effect transistor based on geometrical correction factor of sector Hall plate. Chinese Journal of Semiconductors, 2006, 27(12):2155(in Chinese) http://ieeexplore.ieee.org/document/4098379/
[7]
Chen S L, Kuo C H, Liu S I. CMOS magnetic field to frequency converter. IEEE Sensors Journal, 2003, 3(2):241 doi: 10.1109/JSEN.2002.807485
[8]
Santillan-Quiñonez G F, Champac V, Murphy R S. Exploiting magnetic sensing capabilities of short split-drain MAGFETs. Solid-State Electron, 2010, 54:1239 doi: 10.1016/j.sse.2010.06.016
[9]
Hasan S M R. A novel 0.7 V high sensitivity complementary differential MAGFET sensor for contactless mechatronic applications. Sensors and Actuators A:Physical, 2010, 163(1):138 doi: 10.1016/j.sna.2010.08.009
[10]
Zhao Xiaofeng, Wen Dianzhong. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET. Journal of Semiconductors, 2009, 30(11):114002 doi: 10.1088/1674-4926/30/11/114002
[11]
Wei W, Wang T, He Y, et al. Investigation on high mobility nanocrystalline Si with crystalline Si heterostructure. Superlattices and Microstructures, 2007, 41(4):216 doi: 10.1016/j.spmi.2006.12.002
[12]
Wei Wensheng. Detection of carrier information in heterojunctions of nanocrystalline/crystalline Si. Solid State Sci, 2010, (12):789 http://www.sciencedirect.com/science/article/pii/S1293255810000828
[13]
Chen X Y, Sheng W Z, He Y L. Enhancement of electron mobility in nanocrystalline silicon/crystalline silicon heterostructures. J App Phys, 2005, (97):024305 doi: 10.1063/1.1832752
[14]
Chuai Rongyan, Wang Jian, Wu Meile, et al. A tunneling piezoresistive model for polysilicon. Journal of Semiconductors, 2012, 33(9):092003 doi: 10.1088/1674-4926/33/9/092003
[15]
Bihan F L, Carvou E, Fortin B, et al. Realization of polycrystalline silicon magnetic sensors. Sensors and Actuators A:Physical, 2001, 88(2):133 doi: 10.1016/S0924-4247(00)00506-9
[16]
Carvou E, Bihan F L, Bonnaud O. Hall effect magnetic sensors based on polysilicon TFTs. IEEE Sensors Journal, 2004, 4(5):597 doi: 10.1109/JSEN.2004.833497
[17]
Yamaguchi Y, Hashimoto H, Kimura M, et al. Magnetic-field area sensor using poly-Si micro Hall devices. IEEE Electron Device Lett, 2010, 31(11):1260 doi: 10.1109/LED.2010.2068271
[18]
Kimura M, Yamaguchi Y, Hashimoto H, et al. Analysis of Hall voltage in micro poly-Si Hall cells. Electrochem Solid-State Lett, 2010, 13(8):J96 doi: 10.1149/1.3436663
[19]
Zhao Xiaofeng, Wen Dianzhong, Zhuang Cuicui, et al. Fabrication and characteristics of the magnetic field sensors based on nano-polysilicon thin-film transistors. Journal of Semiconductors, 2013, 34(3):036001 doi: 10.1088/1674-4926/34/3/036001
[20]
Zhao Xiaofeng, Wen Dianzhong, Zhuang Cuicui, et al. High sensitivity magnetic field sensors based on nano-polysilicon thin-film transistors. Chinese Physics Letters, 2012, 29(11):118501 doi: 10.1088/0256-307X/29/11/118501
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2535 Times PDF downloads: 17 Times Cited by: 0 Times

    History

    Received: 04 February 2014 Revised: 13 March 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Xiaofeng Zhao, Dianzhong Wen, Meiwei Lü, Hanyu Guan, Gang Liu. Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor[J]. Journal of Semiconductors, 2014, 35(9): 094004. doi: 10.1088/1674-4926/35/9/094004 X F Zhao, D Z Wen, M Lü, H Y Guan, G Liu. Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor[J]. J. Semicond., 2014, 35(9): 094004. doi: 10.1088/1674-4926/35/9/094004.Export: BibTex EndNote
      Citation:
      Xiaofeng Zhao, Dianzhong Wen, Meiwei Lü, Hanyu Guan, Gang Liu. Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor[J]. Journal of Semiconductors, 2014, 35(9): 094004. doi: 10.1088/1674-4926/35/9/094004

      X F Zhao, D Z Wen, M Lü, H Y Guan, G Liu. Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor[J]. J. Semicond., 2014, 35(9): 094004. doi: 10.1088/1674-4926/35/9/094004.
      Export: BibTex EndNote

      Fabrication and characterization of the split-drain MAGFET based on the nano-polysilicon thin film transistor

      doi: 10.1088/1674-4926/35/9/094004
      Funds:

      the National Natural Science Foundation of China 61006057

      Project supported by the National Natural Science Foundation of China (No. 61006057), the China Postdoctoral Science Foundation Funded Project (No. 2013M530163), the Natural Science Foundation of Heilongjiang Province (No. F201433), and the Modern Sensor Technology Innovation Team for College of Heilongjiang Province (No. 2012TD007)

      the Natural Science Foundation of Heilongjiang Province F201433

      the China Postdoctoral Science Foundation Funded Project 2013M530163

      the Modern Sensor Technology Innovation Team for College of Heilongjiang Province 2012TD007

      More Information
      • Corresponding author: Wen Dianzhong, Email:wendianzhong@hlju.edu.cn
      • Received Date: 2014-02-04
      • Revised Date: 2014-03-13
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return