SEMICONDUCTOR DEVICES

Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

Bin Niu1, Jifang Qiu2, Daibing Zhou1, Can Zhang1, Song Liang1, Dan Lu1, Lingjuan Zhao1, Jian Wu2 and Wei Wang1,

+ Author Affiliations

 Corresponding author: Wang Wei, Email:wwang@semi.ac.cn

PDF

Abstract: A selected area growth wavelength converter based on a PD-EAM optical logic gate for WDM application is presented, integrating an EML transmitter and a SOA-PD receiver. The design, fabrication, and DC characters were analyzed. A 2 Gb/s NRZ signal based on the C-band wavelength converted to 1555 nm with the highest extinction ratio of 7 dB was achieved and wavelength converted eye diagrams with eyes opened were presented.

Key words: distributed feedback laserelectro absorption modulator (EAM)photo detector (PD)optical logic gateselected area growth (SAG)semiconductor optical amplifier (SOA)



[1]
Joergensen C, Danielsen S L, Stubkjaer K E, et al. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 1997, 3:1168 doi: 10.1109/2944.658592
[2]
Durhuus T, Fernier B, Garabedian P, et al. High speed all-optical gating using two-section semiconductor optical amplifier structure. Proc CLEO, Anaheim CA, 1992:CThS4
[3]
Izadpanah H, Elrefaie A, Lin C, et al. Semiconductor optical amplifier as low chirp multi-Gb/s modulator with gain. Tech Dig OFC, San Francisco, CA, 1990:PD34
[4]
Durhuus T, Joergensen C, Mikkelsen B, et al. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration. IEEE Photonics Technol Lett, 1994, 6:53 doi: 10.1109/68.265887
[5]
Wang C C, Tucker R S. Tunable optical wavelength converters with reconfigurable functionality. IEEE J Sel Top Quantum Electron, 1997, 3:1181 doi: 10.1109/2944.658593
[6]
Tauke-Pedretti A, Dummer M M. Separate absorption and modulation Mach-Zehnder wave length converter. IEEE J Lightwave Technol, 2008, 26:91 doi: 10.1109/JLT.2007.913020
[7]
Dummer M M, Sysak M N, Tauke-Pedretti A, et al. Widely tunable separate absorption and modulation wavelength converter with integrated microwave termination. IEEE J Lightwave Technol, 2008, 26(8):938 doi: 10.1109/JLT.2007.915202
[8]
Dummer M M, Klamkin J, Tauke-Pedretti A, et al. 40 Gb/s field-modulated wavelength converters for all-optical packer switching. IEEE J Sel Top Quantum Electron, 2009, 15:494 doi: 10.1109/JSTQE.2009.2017279
[9]
Kodama S, Ito T, Watanabe N, et al. 2.3 picoseconds optical gate monolithically integrating photodiode and electroabsorption modulator. Electron Lett, 2001, 37:1185 doi: 10.1049/el:20010780
[10]
Kodama S, Yoshimatsu T, Ito H. 320 Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator. Electron Lett, 2003, 39(1):383
[11]
Kodama S, Shimizu T. Ultrafast optical sampling gate monolithically integrating a PD and EAM. Electron Lett, 2004, 40:696 doi: 10.1049/el:20040469
[12]
Fidaner O, Demir H V, Sabnis V A, et al. Integrated photonic switches for nanosecond packet-switched optical wavelength conversion. Opt Express, 2006, 14:361 doi: 10.1364/OPEX.14.000361
[13]
Sysak M N, Raring J W, Barton J S, et al. A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs. IEEE Photonics Technol Lett, 2006, 18:1630 doi: 10.1109/LPT.2006.878153
[14]
Veuhoff E. Exploitation of surface selective growth in metalorganic growth technologies for device applications. J Cryst Growth, 1998, 195:444 doi: 10.1016/S0022-0248(98)00641-1
Fig. 1.  Schematic diagram of wavelength converter

Fig. 2.  Microscope picture of the device and illustration of the bias circuit. The length of the DFB/SOA is 400 $\mu $m. The SOA is designed to have a 7$^\circ$ angle with the facet's normal to suppress the facet reflection. The length of the EAM is 225 $\mu $m and the PD is 50 $\mu $m. $R_{\rm L}$ is 100 $\Omega$ and $C_{\rm P}$ is 220 pF

Fig. 3.  Microscope picture of SiO2 SAG strips

Fig. 4.  Photoluminescence spectrum of the material after SAG

Fig. 5.  Spectrum of EML at the condition of $I_{\rm LD}$ = 120 mA, $V_{\rm EA}$ = 0 V, T = 15 ℃ and P-I-V curve at the condition of $V_{\rm EA}$ = 0 V, T = 15 ℃

Fig. 6.  Extinction ratio of EML when $I_{\rm LD}$ = 120 mA

Fig. 7.  PD's photocurrent versus input power (1550 nm) and its I-V curve at 29.6 mW input

Fig. 8.  SOA-PD's photocurrent versus SOA current with 1550 nm different input power and photocurrent versus input power when the SOA current is 150 mA

Fig. 9.  Single PIN-PD and SOA-PD's photocurrent responses at 4 V with 0.2 mW input versus input wavelength

Fig. 10.  Wavelength conversion experiment setup

Fig. 11.  Back to back eye diagrams in the left column, wavelength converted eye diagrams in the right column, 1565 nm, 4.55 mW input in the first row, 1550 nm, 3.28 mW input in the second row, 1535 nm, 4.22 mW input in the last row

Table 1.   Epitaxial layer structure

[1]
Joergensen C, Danielsen S L, Stubkjaer K E, et al. All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers. IEEE J Sel Top Quantum Electron, 1997, 3:1168 doi: 10.1109/2944.658592
[2]
Durhuus T, Fernier B, Garabedian P, et al. High speed all-optical gating using two-section semiconductor optical amplifier structure. Proc CLEO, Anaheim CA, 1992:CThS4
[3]
Izadpanah H, Elrefaie A, Lin C, et al. Semiconductor optical amplifier as low chirp multi-Gb/s modulator with gain. Tech Dig OFC, San Francisco, CA, 1990:PD34
[4]
Durhuus T, Joergensen C, Mikkelsen B, et al. All optical wavelength conversion by SOA's in a Mach-Zehnder configuration. IEEE Photonics Technol Lett, 1994, 6:53 doi: 10.1109/68.265887
[5]
Wang C C, Tucker R S. Tunable optical wavelength converters with reconfigurable functionality. IEEE J Sel Top Quantum Electron, 1997, 3:1181 doi: 10.1109/2944.658593
[6]
Tauke-Pedretti A, Dummer M M. Separate absorption and modulation Mach-Zehnder wave length converter. IEEE J Lightwave Technol, 2008, 26:91 doi: 10.1109/JLT.2007.913020
[7]
Dummer M M, Sysak M N, Tauke-Pedretti A, et al. Widely tunable separate absorption and modulation wavelength converter with integrated microwave termination. IEEE J Lightwave Technol, 2008, 26(8):938 doi: 10.1109/JLT.2007.915202
[8]
Dummer M M, Klamkin J, Tauke-Pedretti A, et al. 40 Gb/s field-modulated wavelength converters for all-optical packer switching. IEEE J Sel Top Quantum Electron, 2009, 15:494 doi: 10.1109/JSTQE.2009.2017279
[9]
Kodama S, Ito T, Watanabe N, et al. 2.3 picoseconds optical gate monolithically integrating photodiode and electroabsorption modulator. Electron Lett, 2001, 37:1185 doi: 10.1049/el:20010780
[10]
Kodama S, Yoshimatsu T, Ito H. 320 Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator. Electron Lett, 2003, 39(1):383
[11]
Kodama S, Shimizu T. Ultrafast optical sampling gate monolithically integrating a PD and EAM. Electron Lett, 2004, 40:696 doi: 10.1049/el:20040469
[12]
Fidaner O, Demir H V, Sabnis V A, et al. Integrated photonic switches for nanosecond packet-switched optical wavelength conversion. Opt Express, 2006, 14:361 doi: 10.1364/OPEX.14.000361
[13]
Sysak M N, Raring J W, Barton J S, et al. A single regrowth integration platform for photonic circuits incorporating tunable SGDBR lasers and quantum-well EAMs. IEEE Photonics Technol Lett, 2006, 18:1630 doi: 10.1109/LPT.2006.878153
[14]
Veuhoff E. Exploitation of surface selective growth in metalorganic growth technologies for device applications. J Cryst Growth, 1998, 195:444 doi: 10.1016/S0022-0248(98)00641-1
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2215 Times PDF downloads: 16 Times Cited by: 0 Times

    History

    Received: 19 January 2014 Revised: 03 March 2014 Online: Published: 01 September 2014

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Bin Niu, Jifang Qiu, Daibing Zhou, Can Zhang, Song Liang, Dan Lu, Lingjuan Zhao, Jian Wu, Wei Wang. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate[J]. Journal of Semiconductors, 2014, 35(9): 094012. doi: 10.1088/1674-4926/35/9/094012 B Niu, J F Qiu, D B Zhou, C Zhang, S Liang, D Lu, L J Zhao, J Wu, W Wang. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate[J]. J. Semicond., 2014, 35(9): 094012. doi: 10.1088/1674-4926/35/9/094012.Export: BibTex EndNote
      Citation:
      Bin Niu, Jifang Qiu, Daibing Zhou, Can Zhang, Song Liang, Dan Lu, Lingjuan Zhao, Jian Wu, Wei Wang. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate[J]. Journal of Semiconductors, 2014, 35(9): 094012. doi: 10.1088/1674-4926/35/9/094012

      B Niu, J F Qiu, D B Zhou, C Zhang, S Liang, D Lu, L J Zhao, J Wu, W Wang. Selected area growth integrated wavelength converter based on PD-EAM optical logic gate[J]. J. Semicond., 2014, 35(9): 094012. doi: 10.1088/1674-4926/35/9/094012.
      Export: BibTex EndNote

      Selected area growth integrated wavelength converter based on PD-EAM optical logic gate

      doi: 10.1088/1674-4926/35/9/094012
      Funds:

      the National Natural Science Foundation of China 61021003

      the State Key Program for Basic Research of China 2011CB301702

      the National High Technology Research and Development Program of China 2011AA010303

      the National Natural Science Foundation of China 61090392

      Project supported by the National High Technology Research and Development Program of China (Nos. 2011AA010303, 2012AA012203), the State Key Program for Basic Research of China (No. 2011CB301702), and the National Natural Science Foundation of China (Nos. 61021003, 61090392)

      the National High Technology Research and Development Program of China 2012AA012203

      More Information
      • Corresponding author: Wang Wei, Email:wwang@semi.ac.cn
      • Received Date: 2014-01-19
      • Revised Date: 2014-03-03
      • Published Date: 2014-09-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return