SEMICONDUCTOR DEVICES

Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor

Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, Qiumin Yang, Yiyang Li and Yiping Zeng

+ Author Affiliations

 Corresponding author: Zhang Yang,zhang_yang@semi.ac.cn

PDF

Abstract: Lead poisoning is a serious environmental concern, which is a health threat. Existing technologies always have some drawbacks, which restrict their application ranges, such as real time monitoring. To solve this problem, glutathione was functionalized on the Au-coated gate area of the pseudomorphic high electron mobility transistor (pHEMT) to detect trace amounts of Pb2+. The positive charge of lead ions will cause a positive potential on the Au gate of the pHEMT sensor, which will increase the current between the source and the drain. The response range for Pb2+ detection has been determined in the concentrations from 0.1 pmol/L to 10 pmol/L. To our knowledge, this is currently the best result for detecting lead ions.

Key words: Environmental monitoringAlGaAs/InGaAspHEMTbiosensor



[1]
Needleman H L. Clamped in a straitjacket:the insertion of lead into gasoline. Environmental Research,1997, 74(2):95 doi: 10.1006/enrs.1997.3767
[2]
Borowska S, Brzóska M M. Metals in cosmetics:implications for human health. Journal of Applied Toxicology, 2015, 35(6):551 doi: 10.1002/jat.v35.6
[3]
Hutchison H E, Stark J M. The anaemia of lead poisoning. Journal of Clinical Pathology, 1961, 14(5):548 doi: 10.1136/jcp.14.5.548
[4]
Dapul H, Laraque D. Lead poisoning in children. Advances in Pediatrics, 2014, 61(1):313 doi: 10.1016/j.yapd.2014.04.004
[5]
Álvarez M A, Carrillo G. Simultaneous determination of arsenic, cadmium, copper, chromium, nickel, lead, thallium in total digested sediment samples, available fractions by electrothermal atomization atomic absorption spectroscopy (ETAAS). Talanta, 2012, 97(16):505 http://cn.bing.com/academic/profile?id=2093387925&encoded=0&v=paper_preview&mkt=zh-cn
[6]
Neuhauser R E, Panne U, Niessner R, et al. On-line, insitu detection of lead aerosols by plasma-spectroscopy, laserexcited atomic fluorescence spectroscopy. Analytica Chimica Acta, 1997, 346(1):37 doi: 10.1016/S0003-2670(97)00244-4
[7]
Thangavel S, Dash K, Dhavile S M, et al. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si, Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES). Talanta, 2015, 131C:505 http://cn.bing.com/academic/profile?id=2085483127&encoded=0&v=paper_preview&mkt=zh-cn
[8]
Jing L, Yi L. A highly sensitive, selective catalytic DNA biosensor for lead ions. J Am Chem Soc, 2000, 122(42):10466 doi: 10.1021/ja0021316
[9]
Chai F, Wang C, Wang T, et al. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces, 2010, 2(5):1466 doi: 10.1021/am100107k
[10]
Willemse C M, Khotso T, Nazeem J, et al. Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors, 2011, 11(4):3970
[11]
Kang Y W, Lee G Y, Chyi J I, et al. Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors, binding-site models. Appl Phys Lett, 2013, 102(17):173704 doi: 10.1063/1.4803916
[12]
Li J, Cheng J, Miao B, et al. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors. Journal of Micromechanics & Microengineering, 2014, 24(7):75023 http://cn.bing.com/academic/profile?id=2040529322&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Wang Y L, Chu B H, Chen K H, et al. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 2009, 94(24):243901 doi: 10.1063/1.3153130
[14]
Ding K, Wang C, Zhang B, et al. Specific detection of alphafetoprotein using AlGaAs/GaAs high electron mobility transistors. IEEE Electron Device Lett, 2014, 35(3):333
[15]
Ma S, Liao Q, Liu H, et al. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Nanoscale, 2012, 4(20):6415 doi: 10.1039/c2nr31708g
[16]
Wang C, Zhang Y, Guan M, et al. Specific detection of mercury(Ⅱ) irons using AlGaAs/InGaAs high electron mobility transistors. J Cryst Growth, 2015, 425:381 doi: 10.1016/j.jcrysgro.2015.02.011
[17]
Wang Shuo, Zheng Xinnian, Yang Hao, et al. A 0.75 dB NF LNA in GaAs pHEMT utilizing gate-drain capacitance, gradual inductor. Journal of Semiconductors, 2015, 36(7):075001 doi: 10.1088/1674-4926/36/7/075001
[18]
Ge Qin, Tao Hongqi, Yu Xuming. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. Journal of Semiconductors, 2015, 36(12):125003 doi: 10.1088/1674-4926/36/12/125003
[19]
Du Zebao, Yang Hao, Zhang Haiying, et al. An integrated power divider implemented in GaAs technology. Journal of Semiconductors, 2014, 35(4):045003 doi: 10.1088/1674-4926/35/4/045003
[20]
Ma Lin, Feng Shiwei, Zhang Yamin, et al. Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method. Journal of Semiconductors, 2014, 35(9):094006 doi: 10.1088/1674-4926/35/9/094006
[21]
Zhou G, Chang J, Cui S, et al. Real-time, selective detection of Pb2C in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Applied Materials & Interfaces, 2014, 6(21):19235 http://cn.bing.com/academic/profile?id=2106838160&encoded=0&v=paper_preview&mkt=zh-cn
[22]
Sisombath N S, Jalilehvand F. Similarities between Nacetylcysteine, glutathione in binding to lead (Ⅱ) ions. Chem Res Toxicol, 2015, 28(12):2313 doi: 10.1021/acs.chemrestox.5b00323
[23]
Vicky M, Farideh J. Lead (Ⅱ) complex formation with glutathione. Inorganic Chemistry, 2012, 51(11):6285 doi: 10.1021/ic300496t
[24]
Sheng C, Zhao H, Gu F, et al. Effect of Pb2+ on L-glutathione monolayers on a silver surface investigated by surface-enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2009, 40(9):1274 doi: 10.1002/jrs.v40:9
[25]
Cui L J, Zeng Y P, Wang B Q, et al. Correlation between optical, electrical properties in In0:52Al0:48As=InxGa1-xAs metamorphic high-electron-mobility-transistor structures on GaAs substrates. J Appl Phys, 2006, 100(3):033705 doi: 10.1063/1.2222404
[26]
Wen Y, Li F Y, Dong X, et al. The electrical detection of Lead ions using gold-nanoparticle, DNAzyme-functionalized graphene device. Advanced Healthcare Materials, 2013, 2(2):271 doi: 10.1002/adhm.v2.2
Fig. 1.  (Color online) (a) Cross-sectional schematic drawing of the AlGaAs/InGaAs pHEMT. (b) Top view photomicrograph of the fabricated pHEMT.

Fig. 2.  A glutathione molecule is confined on an Au gate.

Fig. 3.  (a) I-V characteristics of AlGaAs/InGaAs pHEMT sensor before gate functionalization (as-fabricated pHEMT),and after functionalization with glutathione. (b) Detection of Pb2+ from 0.1 to 10 pM at a constant bias of 0.5 V. GSH stands for being functionalized with glutathione.

Table 1.   Some results about lead detection.

[1]
Needleman H L. Clamped in a straitjacket:the insertion of lead into gasoline. Environmental Research,1997, 74(2):95 doi: 10.1006/enrs.1997.3767
[2]
Borowska S, Brzóska M M. Metals in cosmetics:implications for human health. Journal of Applied Toxicology, 2015, 35(6):551 doi: 10.1002/jat.v35.6
[3]
Hutchison H E, Stark J M. The anaemia of lead poisoning. Journal of Clinical Pathology, 1961, 14(5):548 doi: 10.1136/jcp.14.5.548
[4]
Dapul H, Laraque D. Lead poisoning in children. Advances in Pediatrics, 2014, 61(1):313 doi: 10.1016/j.yapd.2014.04.004
[5]
Álvarez M A, Carrillo G. Simultaneous determination of arsenic, cadmium, copper, chromium, nickel, lead, thallium in total digested sediment samples, available fractions by electrothermal atomization atomic absorption spectroscopy (ETAAS). Talanta, 2012, 97(16):505 http://cn.bing.com/academic/profile?id=2093387925&encoded=0&v=paper_preview&mkt=zh-cn
[6]
Neuhauser R E, Panne U, Niessner R, et al. On-line, insitu detection of lead aerosols by plasma-spectroscopy, laserexcited atomic fluorescence spectroscopy. Analytica Chimica Acta, 1997, 346(1):37 doi: 10.1016/S0003-2670(97)00244-4
[7]
Thangavel S, Dash K, Dhavile S M, et al. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si, Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES). Talanta, 2015, 131C:505 http://cn.bing.com/academic/profile?id=2085483127&encoded=0&v=paper_preview&mkt=zh-cn
[8]
Jing L, Yi L. A highly sensitive, selective catalytic DNA biosensor for lead ions. J Am Chem Soc, 2000, 122(42):10466 doi: 10.1021/ja0021316
[9]
Chai F, Wang C, Wang T, et al. Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces, 2010, 2(5):1466 doi: 10.1021/am100107k
[10]
Willemse C M, Khotso T, Nazeem J, et al. Metallo-graphene nanocomposite electrocatalytic platform for the determination of toxic metal ions. Sensors, 2011, 11(4):3970
[11]
Kang Y W, Lee G Y, Chyi J I, et al. Human immunodeficiency virus drug development assisted with AlGaN/GaN high electron mobility transistors, binding-site models. Appl Phys Lett, 2013, 102(17):173704 doi: 10.1063/1.4803916
[12]
Li J, Cheng J, Miao B, et al. Detection of prostate-specific antigen with biomolecule-gated AlGaN/GaN high electron mobility transistors. Journal of Micromechanics & Microengineering, 2014, 24(7):75023 http://cn.bing.com/academic/profile?id=2040529322&encoded=0&v=paper_preview&mkt=zh-cn
[13]
Wang Y L, Chu B H, Chen K H, et al. Fast detection of a protozoan pathogen, Perkinsus marinus, using AlGaN/GaN high electron mobility transistors. Appl Phys Lett, 2009, 94(24):243901 doi: 10.1063/1.3153130
[14]
Ding K, Wang C, Zhang B, et al. Specific detection of alphafetoprotein using AlGaAs/GaAs high electron mobility transistors. IEEE Electron Device Lett, 2014, 35(3):333
[15]
Ma S, Liao Q, Liu H, et al. An excellent enzymatic lactic acid biosensor with ZnO nanowires-gated AlGaAs/GaAs high electron mobility transistor. Nanoscale, 2012, 4(20):6415 doi: 10.1039/c2nr31708g
[16]
Wang C, Zhang Y, Guan M, et al. Specific detection of mercury(Ⅱ) irons using AlGaAs/InGaAs high electron mobility transistors. J Cryst Growth, 2015, 425:381 doi: 10.1016/j.jcrysgro.2015.02.011
[17]
Wang Shuo, Zheng Xinnian, Yang Hao, et al. A 0.75 dB NF LNA in GaAs pHEMT utilizing gate-drain capacitance, gradual inductor. Journal of Semiconductors, 2015, 36(7):075001 doi: 10.1088/1674-4926/36/7/075001
[18]
Ge Qin, Tao Hongqi, Yu Xuming. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. Journal of Semiconductors, 2015, 36(12):125003 doi: 10.1088/1674-4926/36/12/125003
[19]
Du Zebao, Yang Hao, Zhang Haiying, et al. An integrated power divider implemented in GaAs technology. Journal of Semiconductors, 2014, 35(4):045003 doi: 10.1088/1674-4926/35/4/045003
[20]
Ma Lin, Feng Shiwei, Zhang Yamin, et al. Evaluation of the drain-source voltage effect on AlGaAs/InGaAs PHEMTs thermal resistance by the structure function method. Journal of Semiconductors, 2014, 35(9):094006 doi: 10.1088/1674-4926/35/9/094006
[21]
Zhou G, Chang J, Cui S, et al. Real-time, selective detection of Pb2C in water using a reduced graphene oxide/gold nanoparticle field-effect transistor device. ACS Applied Materials & Interfaces, 2014, 6(21):19235 http://cn.bing.com/academic/profile?id=2106838160&encoded=0&v=paper_preview&mkt=zh-cn
[22]
Sisombath N S, Jalilehvand F. Similarities between Nacetylcysteine, glutathione in binding to lead (Ⅱ) ions. Chem Res Toxicol, 2015, 28(12):2313 doi: 10.1021/acs.chemrestox.5b00323
[23]
Vicky M, Farideh J. Lead (Ⅱ) complex formation with glutathione. Inorganic Chemistry, 2012, 51(11):6285 doi: 10.1021/ic300496t
[24]
Sheng C, Zhao H, Gu F, et al. Effect of Pb2+ on L-glutathione monolayers on a silver surface investigated by surface-enhanced Raman scattering spectroscopy. Journal of Raman Spectroscopy, 2009, 40(9):1274 doi: 10.1002/jrs.v40:9
[25]
Cui L J, Zeng Y P, Wang B Q, et al. Correlation between optical, electrical properties in In0:52Al0:48As=InxGa1-xAs metamorphic high-electron-mobility-transistor structures on GaAs substrates. J Appl Phys, 2006, 100(3):033705 doi: 10.1063/1.2222404
[26]
Wen Y, Li F Y, Dong X, et al. The electrical detection of Lead ions using gold-nanoparticle, DNAzyme-functionalized graphene device. Advanced Healthcare Materials, 2013, 2(2):271 doi: 10.1002/adhm.v2.2
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2637 Times PDF downloads: 13 Times Cited by: 0 Times

    History

    Received: 03 May 2016 Revised: 27 May 2016 Online: Published: 01 November 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, Qiumin Yang, Yiyang Li, Yiping Zeng. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor[J]. Journal of Semiconductors, 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003 J Q Niu, Y Zhang, M Guan, C Y Wang, L J Cui, Q M Yang, Y Y Li, Y P Zeng. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor[J]. J. Semicond., 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003.Export: BibTex EndNote
      Citation:
      Jiqiang Niu, Yang Zhang, Min Guan, Chengyan Wang, Lijie Cui, Qiumin Yang, Yiyang Li, Yiping Zeng. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor[J]. Journal of Semiconductors, 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003

      J Q Niu, Y Zhang, M Guan, C Y Wang, L J Cui, Q M Yang, Y Y Li, Y P Zeng. Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor[J]. J. Semicond., 2016, 37(11): 114003. doi: 10.1088/1674-4926/37/11/114003.
      Export: BibTex EndNote

      Detection of lead ions with AlGaAs/InGaAs pseudomorphic high electron mobility transistor

      doi: 10.1088/1674-4926/37/11/114003
      Funds:

      Project supported by the National Natural Science Foundation of China (Nos. 61204012, 61274049, 61376058), the Beijing Natural Science Foundation (Nos. 4142053, 4132070), and the Beijing Nova Program (Nos. 2010B056, xxhz201503).

      Beijing Natural Science Foundation Nos. 4142053, 4132070

      National Natural Science Foundation of China Nos. 61204012, 61274049, 61376058

      Beijing Nova Program Nos. 2010B056, xxhz201503

      More Information
      • Corresponding author: Zhang Yang,zhang_yang@semi.ac.cn
      • Received Date: 2016-05-03
      • Revised Date: 2016-05-27
      • Published Date: 2016-11-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return