SEMICONDUCTOR DEVICES

Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory

Ran Jiang, Xianghao Du and Zuyin Han

+ Author Affiliations

 Corresponding author: Jiang Ran, Email: jiangran@sdu.edu.cn

PDF

Abstract: It is investigated for the effect of a ferroelectric Si:HfO2 thin film on the resistive switching in a stacked Pt/Si:HfO2/highly-oxygen-deficient HfO2-x/Pt structure. Improved resistance performance was observed. It was concluded that the observed resistive switching behavior was related to the modulation of the width and height of a depletion barrier in the HfO2-x layer, which was caused by the Si:HfO2 ferroelectric polarization field effect. Reliable switching reproducibility and long data retention were observed in these memory cells, suggesting their great potential in non-volatile memories applications with full compatibility and simplicity.

Key words: ReRAMferroelectricmodels



[1]
Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater, 2009, (21): 2632 http://cn.bing.com/academic/profile?id=2074357625&encoded=0&v=paper_preview&mkt=zh-cn
[2]
Jiang R, Du X, Han Z, et al. Investigation of chemical distribution in the oxide bulk layer in Ti/HfO2/Pt memory devices using X-ray photoelectron spectroscopy. Appl Phys Lett, 2015, 106(17): 173509 doi: 10.1063/1.4919567
[3]
Kita K, Eika A, Nishimura T, et al. Resistive switching in NiO bilayer films with different crystallinity layers. Key Engineering Materials, 2011, 470: 188 doi: 10.4028/www.scientific.net/KEM.470
[4]
Chand U, Huang C Y, Jieng J H, et al. Suppression of endurance degradation by utilizing oxygen plasma treatment in HfO2 resistive switching memory. Appl Phys Lett, 2015, 106(15): 153502 doi: 10.1063/1.4918679
[5]
Sowinska M, Bertaud T, Walczyk D, et al. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells. J Appl Phys, 2014, 115(20): 204509 doi: 10.1063/1.4879678
[6]
Tan T, Guo T, Chen X et al. Impacts of Au-doping on the performance of Cu/HfO2/Pt RRAM devices. Appl Surf Sci, 2014, 317: 982 doi: 10.1016/j.apsusc.2014.09.027
[7]
Zhou L W, Shao X L, Li X Y et al. Interface engineering for improving reliability of resistance switching in Cu/HfO2/TiO2/Pt structure. Appl Phys Lett, 2015, 107: 072901 doi: 10.1063/1.4928710
[8]
Jiang R, Xie E, Chen Z, et al. Electrical property of HfOxNy-HfO2-HfOxNy sandwich-stack films. Appl Surf Sci, 2006, 253(5): 2421 doi: 10.1016/j.apsusc.2006.04.056
[9]
Jiang R, Li Z, Zhang Y. Inflexion behaviour of VFB while tuning the oxide thickness in HfO2-based capacitors. J Phys D, 2010, 43(16): 165302 doi: 10.1088/0022-3727/43/16/165302
[10]
Jiang R, Li Z. Interfacial growth at the HfO2/Si interface during annealing in oxygen ambient. Semicond Sci Tech, 2009, 24(6): 065006 doi: 10.1088/0268-1242/24/6/065006
[11]
Jiang R, Xie E, Wang Z. Effect of inner oxygen on the interfacial layer formation for HfO2 gate dielectric. J Mater Sci, 2007, 42(17): 7343 doi: 10.1007/s10853-007-1584-z
[12]
Jiang R, Xie E, Wang Z. Interfacial chemical structure of HfO2/Si film fabricated by sputtering. Appl Phys Lett, 2006, 89(14): 142907 doi: 10.1063/1.2358841
[13]
Jiang R, Li Z. Behavior of stress induced leakage current in thin HfO_xN_y films. Appl Phys Lett, 2008, 92(1): 2919
[14]
Sadaf S M, Bourim E M, Liu X, et al. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure. Appl Phys Lett, 2012, 100(11): 113505 doi: 10.1063/1.3694016
[15]
Li Q, Wang J, Liu Z, et al. Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3-0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci, 2015, 51(2): 1153 http://cn.bing.com/academic/profile?id=2133801301&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Böcke T, Müler J, Brähaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99(10): 102903 doi: 10.1063/1.3634052
[17]
Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater, 2012, 22(11): 2412 doi: 10.1002/adfm.v22.11
[18]
Müler J, Böcke T S, Schrör U, et al. Nanosecond polarization switching and long retention in a novel MFIS-FET based on Ferroelectric. IEEE Electron Device Lett, 2012, 33(2): 185 doi: 10.1109/LED.2011.2177435
[19]
Sang X, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett, 2015, 106(16): 162905 doi: 10.1063/1.4919135
[20]
Lomenzo P D, Takmeel Q, Zhou C, et al. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J Appl Phys, 2015, 117(13): 134105 doi: 10.1063/1.4916715
[21]
Schroeder U, Mueller S, Mueller J, et al. Hafnium oxide based CMOS compatible ferroelectric materials. ECS Journal of Solid State Science and Technology, 2013, 2(4): N69 doi: 10.1149/2.010304jss
[22]
Müler J, Schröer U, Böcke T, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys, 2011, 110(11): 114113 doi: 10.1063/1.3667205
[23]
Schroeder U, Yurchuk E, Müler J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys, 2014 53(8S1): 08LE2 http://cn.bing.com/academic/profile?id=1990324180&encoded=0&v=paper_preview&mkt=zh-cn
[24]
Lomenzo P D, Takmeel Q, Zhou C, et al. The effects of layering in ferroelectric Si-doped HfO2 thin films. Appl Phys Lett, 2014, 105(7): 072906 doi: 10.1063/1.4893738
[25]
Yang M K, Park J W, Ko T K, et al. Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices. Appl Phys Lett, 2009, 95(4): 2105 https://www.researchgate.net/publication/234887562_Bipolar_Resistive_Switching_Behavior_in_TiMnO2Pt_Structure_for_Nonvolatile_Memory_Devices
[26]
Cho D Y, Lee J M, Oh S J, et al. Influence of oxygen vacancies on the electronic structure of HfO2 films. Phys Rev B, 2007, 76(16): 165411 doi: 10.1103/PhysRevB.76.165411
[27]
Robertson J, Sharia O, Demkov A. Fermi level pinning by defects in HfO2-metal gate stacks. Appl Phys Lett, 2007, 91(13): 2912 https://www.researchgate.net/publication/234974820_Fermi_Level_Pinning_by_Defects_in_HfO2-Metal_Gate_Stacks
[28]
Sharath S, Kurian J, Komissinskiy P, et al. Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories. Appl Phys Lett, 2014, 105(7): 073505 doi: 10.1063/1.4893605
[29]
Strachan J P, Yang J J, Montoro L, et al. Characterization of electroforming-free titanium dioxide memristors. Beilstein Journal of Nanotechnology, 2013, 4(1): 467 http://cn.bing.com/academic/profile?id=2138116249&encoded=0&v=paper_preview&mkt=zh-cn
[30]
Mathews S, Ramesh R, Venkatesan T, et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science, 1997, 276(5310): 238 doi: 10.1126/science.276.5310.238
[31]
Sze S, Kwok K N. Physics of semiconductor devices. 3rd ed. Wiley Online Library, 2007
[32]
Park J, Kwon D H, Park H, et al. Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl Phys Lett, 2014, 105(18): 183103 doi: 10.1063/1.4901053
[33]
Hara T. Electronic structures near surfaces of perovskite type oxides. Mater Chem Phys, 2005, 91(2): 243 http://cn.bing.com/academic/profile?id=2043986005&encoded=0&v=paper_preview&mkt=zh-cn
[34]
Shanthi N, Sarma D. Electronic structure of electron doped SrTiO 3: SrTiO3-δ and Sr1-xLa xTiO3. Phys Rev B, 1998, 57(4): 2153 doi: 10.1103/PhysRevB.57.2153
[35]
Jiang Ran, Meng Lingguo, Zhang Xijian, et al. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. Journal of Semiconductors, 2012, 33(9): 093004 doi: 10.1088/1674-4926/33/9/093004
[36]
Zhang Yan, Jiang Ran. Effect of annealing on characteristics of a HfOxNy-HfO2-HfOxNy sandwich stack compared with HfO2 film. Journal of Semiconductors, 2009, 30(8): 082004 doi: 10.1088/1674-4926/30/8/082004
[37]
Jiang Ran, Zhang Yan. Observation of ferromagnetism in highly oxygen-deficient HfO2 films. Journal of Semiconductors, 2009, 30(10): 102002 doi: 10.1088/1674-4926/30/10/102002
Fig. 1.  I-V curve characteristics of (a) Pt /40 nm-Si:HfO$_{2}$/10 nm-HfO$_{2-x}$/ Pt and (b) Pt /50 nm-HfO$_{2}$/Pt.

Fig. 2.  (Color online) Resistance ratio between the HRS and the LRS derived at-1~V for the Pt/Si:HfO$_{2}$/HfO$_{2-x}$/Pt and the control Pt/HfO$_{2}$/Pt devices, respectively. The data points are derived from 20 different devices.

Fig. 3.  (a) Retention properties of the Pt/Si:HfO$_{2}$/HfO$_{2-x}$/Pt device switched in LRS and HRS at room temperature. (b) Endurance test of the Pt/Si:HfO$_{2}$/HfO$_{2-x}$/Pt device continuously pulsed for over 10$^{6}$ cycles.

Fig. 4.  (Color online) Schematic drawings of the working mechanism for the Pt/Si:HfO$_{2}$/HfO$_{2-x}$/Pt structure under (a) negative and (b) positive bias. In the HfO$_{2-x}$ layer, the black dots denote the electrons. The“circled plus”symbols in the HfO$_{2-x}$ layer represent positively fixed charges (oxygen vacancies). The (c) and (d) are the corresponding potential energy profiles of (a) and (b), respectively. $E_{\rm p}$ denotes the electric field of polarization and the $E_{\rm ex}$ denotes the external field.

Fig. 5.  Resistance ratio at-1 V as function of polarization for Pt/Si:HfO$_{2}$/HfO$_{2-x}$/Pt with various Ar/O$_{2}$-sputtered HfO$_{2-x}$ layers. Right top is the detailed resistance at-1 V as function of polarization for a sample with an Ar/O$_{2}= 9:1$ sputtered HfO$_{2-x}$ layer. The data points are averaged over 20 devices for Pt/Si:HfO$_{2}$/HfO$_{2-x}$/Pt.

[1]
Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater, 2009, (21): 2632 http://cn.bing.com/academic/profile?id=2074357625&encoded=0&v=paper_preview&mkt=zh-cn
[2]
Jiang R, Du X, Han Z, et al. Investigation of chemical distribution in the oxide bulk layer in Ti/HfO2/Pt memory devices using X-ray photoelectron spectroscopy. Appl Phys Lett, 2015, 106(17): 173509 doi: 10.1063/1.4919567
[3]
Kita K, Eika A, Nishimura T, et al. Resistive switching in NiO bilayer films with different crystallinity layers. Key Engineering Materials, 2011, 470: 188 doi: 10.4028/www.scientific.net/KEM.470
[4]
Chand U, Huang C Y, Jieng J H, et al. Suppression of endurance degradation by utilizing oxygen plasma treatment in HfO2 resistive switching memory. Appl Phys Lett, 2015, 106(15): 153502 doi: 10.1063/1.4918679
[5]
Sowinska M, Bertaud T, Walczyk D, et al. In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells. J Appl Phys, 2014, 115(20): 204509 doi: 10.1063/1.4879678
[6]
Tan T, Guo T, Chen X et al. Impacts of Au-doping on the performance of Cu/HfO2/Pt RRAM devices. Appl Surf Sci, 2014, 317: 982 doi: 10.1016/j.apsusc.2014.09.027
[7]
Zhou L W, Shao X L, Li X Y et al. Interface engineering for improving reliability of resistance switching in Cu/HfO2/TiO2/Pt structure. Appl Phys Lett, 2015, 107: 072901 doi: 10.1063/1.4928710
[8]
Jiang R, Xie E, Chen Z, et al. Electrical property of HfOxNy-HfO2-HfOxNy sandwich-stack films. Appl Surf Sci, 2006, 253(5): 2421 doi: 10.1016/j.apsusc.2006.04.056
[9]
Jiang R, Li Z, Zhang Y. Inflexion behaviour of VFB while tuning the oxide thickness in HfO2-based capacitors. J Phys D, 2010, 43(16): 165302 doi: 10.1088/0022-3727/43/16/165302
[10]
Jiang R, Li Z. Interfacial growth at the HfO2/Si interface during annealing in oxygen ambient. Semicond Sci Tech, 2009, 24(6): 065006 doi: 10.1088/0268-1242/24/6/065006
[11]
Jiang R, Xie E, Wang Z. Effect of inner oxygen on the interfacial layer formation for HfO2 gate dielectric. J Mater Sci, 2007, 42(17): 7343 doi: 10.1007/s10853-007-1584-z
[12]
Jiang R, Xie E, Wang Z. Interfacial chemical structure of HfO2/Si film fabricated by sputtering. Appl Phys Lett, 2006, 89(14): 142907 doi: 10.1063/1.2358841
[13]
Jiang R, Li Z. Behavior of stress induced leakage current in thin HfO_xN_y films. Appl Phys Lett, 2008, 92(1): 2919
[14]
Sadaf S M, Bourim E M, Liu X, et al. Ferroelectricity-induced resistive switching in Pb(Zr0.52Ti0.48)O3/Pr0.7Ca0.3MnO3/Nb-doped SrTiO3 epitaxial heterostructure. Appl Phys Lett, 2012, 100(11): 113505 doi: 10.1063/1.3694016
[15]
Li Q, Wang J, Liu Z, et al. Enhanced energy-storage properties of BaZrO3-modified 0.80Bi0.5Na0.5TiO3-0.20Bi0.5K0.5TiO3 lead-free ferroelectric ceramics. J Mater Sci, 2015, 51(2): 1153 http://cn.bing.com/academic/profile?id=2133801301&encoded=0&v=paper_preview&mkt=zh-cn
[16]
Böcke T, Müler J, Brähaus D, et al. Ferroelectricity in hafnium oxide thin films. Appl Phys Lett, 2011, 99(10): 102903 doi: 10.1063/1.3634052
[17]
Mueller S, Mueller J, Singh A, et al. Incipient ferroelectricity in Al-doped HfO2 thin films. Adv Funct Mater, 2012, 22(11): 2412 doi: 10.1002/adfm.v22.11
[18]
Müler J, Böcke T S, Schrör U, et al. Nanosecond polarization switching and long retention in a novel MFIS-FET based on Ferroelectric. IEEE Electron Device Lett, 2012, 33(2): 185 doi: 10.1109/LED.2011.2177435
[19]
Sang X, Grimley E D, Schenk T, et al. On the structural origins of ferroelectricity in HfO2 thin films. Appl Phys Lett, 2015, 106(16): 162905 doi: 10.1063/1.4919135
[20]
Lomenzo P D, Takmeel Q, Zhou C, et al. TaN interface properties and electric field cycling effects on ferroelectric Si-doped HfO2 thin films. J Appl Phys, 2015, 117(13): 134105 doi: 10.1063/1.4916715
[21]
Schroeder U, Mueller S, Mueller J, et al. Hafnium oxide based CMOS compatible ferroelectric materials. ECS Journal of Solid State Science and Technology, 2013, 2(4): N69 doi: 10.1149/2.010304jss
[22]
Müler J, Schröer U, Böcke T, et al. Ferroelectricity in yttrium-doped hafnium oxide. J Appl Phys, 2011, 110(11): 114113 doi: 10.1063/1.3667205
[23]
Schroeder U, Yurchuk E, Müler J, et al. Impact of different dopants on the switching properties of ferroelectric hafniumoxide. Jpn J Appl Phys, 2014 53(8S1): 08LE2 http://cn.bing.com/academic/profile?id=1990324180&encoded=0&v=paper_preview&mkt=zh-cn
[24]
Lomenzo P D, Takmeel Q, Zhou C, et al. The effects of layering in ferroelectric Si-doped HfO2 thin films. Appl Phys Lett, 2014, 105(7): 072906 doi: 10.1063/1.4893738
[25]
Yang M K, Park J W, Ko T K, et al. Bipolar resistive switching behavior in Ti/MnO2/Pt structure for nonvolatile memory devices. Appl Phys Lett, 2009, 95(4): 2105 https://www.researchgate.net/publication/234887562_Bipolar_Resistive_Switching_Behavior_in_TiMnO2Pt_Structure_for_Nonvolatile_Memory_Devices
[26]
Cho D Y, Lee J M, Oh S J, et al. Influence of oxygen vacancies on the electronic structure of HfO2 films. Phys Rev B, 2007, 76(16): 165411 doi: 10.1103/PhysRevB.76.165411
[27]
Robertson J, Sharia O, Demkov A. Fermi level pinning by defects in HfO2-metal gate stacks. Appl Phys Lett, 2007, 91(13): 2912 https://www.researchgate.net/publication/234974820_Fermi_Level_Pinning_by_Defects_in_HfO2-Metal_Gate_Stacks
[28]
Sharath S, Kurian J, Komissinskiy P, et al. Thickness independent reduced forming voltage in oxygen engineered HfO2 based resistive switching memories. Appl Phys Lett, 2014, 105(7): 073505 doi: 10.1063/1.4893605
[29]
Strachan J P, Yang J J, Montoro L, et al. Characterization of electroforming-free titanium dioxide memristors. Beilstein Journal of Nanotechnology, 2013, 4(1): 467 http://cn.bing.com/academic/profile?id=2138116249&encoded=0&v=paper_preview&mkt=zh-cn
[30]
Mathews S, Ramesh R, Venkatesan T, et al. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science, 1997, 276(5310): 238 doi: 10.1126/science.276.5310.238
[31]
Sze S, Kwok K N. Physics of semiconductor devices. 3rd ed. Wiley Online Library, 2007
[32]
Park J, Kwon D H, Park H, et al. Role of oxygen vacancies in resistive switching in Pt/Nb-doped SrTiO3. Appl Phys Lett, 2014, 105(18): 183103 doi: 10.1063/1.4901053
[33]
Hara T. Electronic structures near surfaces of perovskite type oxides. Mater Chem Phys, 2005, 91(2): 243 http://cn.bing.com/academic/profile?id=2043986005&encoded=0&v=paper_preview&mkt=zh-cn
[34]
Shanthi N, Sarma D. Electronic structure of electron doped SrTiO 3: SrTiO3-δ and Sr1-xLa xTiO3. Phys Rev B, 1998, 57(4): 2153 doi: 10.1103/PhysRevB.57.2153
[35]
Jiang Ran, Meng Lingguo, Zhang Xijian, et al. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. Journal of Semiconductors, 2012, 33(9): 093004 doi: 10.1088/1674-4926/33/9/093004
[36]
Zhang Yan, Jiang Ran. Effect of annealing on characteristics of a HfOxNy-HfO2-HfOxNy sandwich stack compared with HfO2 film. Journal of Semiconductors, 2009, 30(8): 082004 doi: 10.1088/1674-4926/30/8/082004
[37]
Jiang Ran, Zhang Yan. Observation of ferromagnetism in highly oxygen-deficient HfO2 films. Journal of Semiconductors, 2009, 30(10): 102002 doi: 10.1088/1674-4926/30/10/102002
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2921 Times PDF downloads: 21 Times Cited by: 0 Times

    History

    Received: 25 December 2015 Revised: 16 January 2016 Online: Published: 01 August 2016

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ran Jiang, Xianghao Du, Zuyin Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory[J]. Journal of Semiconductors, 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006 R Jiang, X H Du, Z Y Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory[J]. J. Semicond., 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006.Export: BibTex EndNote
      Citation:
      Ran Jiang, Xianghao Du, Zuyin Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory[J]. Journal of Semiconductors, 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006

      R Jiang, X H Du, Z Y Han. Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory[J]. J. Semicond., 2016, 37(8): 084006. doi: 10.1088/1674-4926/37/8/084006.
      Export: BibTex EndNote

      Ferroelectricity-modulated resistive switching in Pt/Si:HfO2/HfO2-x/Pt memory

      doi: 10.1088/1674-4926/37/8/084006
      Funds:

      the Natural Science Foundation of Shandong Province ZR2012FQ012

      the National Natural Science Foundation of China 11374182

      Project supported by the National Natural Science Foundation of China (No. 11374182), the Natural Science Foundation of Shandong Province (No. ZR2012FQ012), and the Jinan Independent Innovation Projects of Universities (No. 201303019)

      the Jinan Independent Innovation Projects of Universities 201303019

      More Information
      • Corresponding author: Jiang Ran, Email: jiangran@sdu.edu.cn
      • Received Date: 2015-12-25
      • Revised Date: 2016-01-16
      • Published Date: 2016-08-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return