SPECIAL TOPIC ON PEROVSKITE SOLAR CELLS

Calculation studies on point defects in perovskite solar cells

Dan Han1, 2, Chenmin Dai2 and Shiyou Chen2,

+ Author Affiliations

 Corresponding author: Shiyou Chen, Email:chensy@ee.ecnu.edu.cn

PDF

Abstract: The close-to-optimal band gap, large absorption coefficient, low manufacturing cost and rapid increase in power conversion efficiency make the organic-inorganic hybrid halide (CH3NH3PbI3) and related perovskite solar cells very promising for commercialization. The properties of point defects in the absorber layer semiconductors have important influence on the photovoltaic performance of solar cells, so the investigation on the defect properties in the perovskite semiconductors is necessary for the optimization of their photovoltaic performance. In this work, we give a brief review to the first-principles calculation studies on the defect properties in a series of perovskite semiconductors, including the organic-inorganic hybrid perovskites and inorganic halide perovskites. Experimental identification of these point defects and characterization of their properties are called for.

Key words: point defectsperovskite solar cellsnon-radiative recombination



[1]
Zhao J H, Wang A H, Green M A, et al. 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett, 1998, 73(14):1991 https://www.researchgate.net/publication/234972975_Novel_198_efficient_honeycomb_textured_multicrystalline_and_244_monocrystalline_silicon_solar_cells_Appl_Phys_Lett?_sg=UcMWhKnOp1AyClfTG-dOjAZtnBLfmAvKmaqj683rnktg0JQt_8GGrDRy02zspeegSPwePiPsJxNRXdGygozvMA
[2]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovoltaics, 2015, 23(1):1 doi: 10.1002/pip.v23.1
[3]
Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovoltaics, 2013, 3(4):1184 doi: 10.1109/JPHOTOV.2013.2270351
[4]
Smith D D, Cousins P J, Masad A, et al. Generation III high efficiency lower cost technology:transition to full scale manufacturing. 2012 IEEE 38th Photovoltaic Specialists Conference, 2012:001594 http://cn.bing.com/academic/profile?id=d54d3dc7bab26b3d9573a3754734408f&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Polman A, Knight M, Garnett E C, et al. Photovoltaic materials:Present efficiencies and future challenges. Science, 2016, 352(6283):307 http://cn.bing.com/academic/profile?id=2566ee25e2375841f14f093c90d3bc19&encoded=0&v=paper_preview&mkt=zh-cn
[6]
Kayes B M, Hui N, Twist R, et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 201137th IEEE Photovoltaic Specialists Conference, 2011:000004 https://www.researchgate.net/publication/261038160_276_Conversion_efficiency_a_new_record_for_single-junction_solar_cells_under_1_sun_illumination
[7]
King R R, Law D C, Edmondson K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90(18):183516 doi: 10.1063/1.2734507
[8]
Geisz J F, Kurtz S, Wanlass M W, et al. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl Phys Lett, 2007, 91(2):023502 doi: 10.1063/1.2753729
[9]
Ma J, Kuciauskas D, Albin D, et al. Dependence of the minoritycarrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Phys Rev Lett, 2013, 111(6):067402 doi: 10.1103/PhysRevLett.111.067402
[10]
Wei S H, Zhang S. Chemical trends of defect formation and doping limit in II-VI semiconductors:the case of CdTe. Phys Rev B, 2002, 66:155211 doi: 10.1103/PhysRevB.66.155211
[11]
Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater, 2010, 22(20):E156 doi: 10.1002/adma.200904155
[12]
Wei W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater, 2014, 4(7):1301465 doi: 10.1002/aenm.201301465
[13]
Zhang S B, Wei S H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B, 1998, 57(16):9642 doi: 10.1103/PhysRevB.57.9642
[14]
Huang B, Chen S, Deng H X, et al. Origin of reduced efficiency in Cu(In, Ga)Se2 solar cells with high Ga concentration:Alloy solubility versus intrinsic defects. IEEE J Photovoltaics, 2014, 4(1):477 doi: 10.1109/JPHOTOV.2013.2285617
[15]
Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol Energy Mater Sol Cells, 2009, 93(5):583 doi: 10.1016/j.solmat.2008.12.009
[16]
Weber A, Schmidt S, Abou-Ras D, et al. Texture inheritance in thin-film growth of Cu2ZnSnS4. Appl Phys Lett, 2009, 95(4):041904 doi: 10.1063/1.3192357
[17]
Lin X, Ennaoui A, Levcenko S, et al. Defect study of Cu2ZnSn(SxSe1-x)(4) thin film absorbers using photoluminescence and modulated surface photovoltage spectroscopy. Appl Phys Lett, 2015, 106(1):013903 doi: 10.1063/1.4905311
[18]
Cui H, Liu X, Liu F, et al. Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact. Appl Phys Lett, 2014, 104(4):041115 doi: 10.1063/1.4863951
[19]
Kim J, Hiroi H, Todorov T K, et al. High efficiency Cu2ZnSn(S, Se)(4) solar cells by applying a double In2S3/CdS emitter. Adv Mater, 2014, 26(44):7427 doi: 10.1002/adma.201402373
[20]
Gunawan O, Todorov T K, Mitzi D B. Loss mechanisms in hydrazine-processed Cu2ZnSn(S, Se)(4) solar cells. Appl Phys Lett, 2010, 97(23):233506 doi: 10.1063/1.3522884
[21]
Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134(42):17396 doi: 10.1021/ja307789s
[22]
Chung I, Lee B, He J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399):486 doi: 10.1038/nature11067
[23]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107):643 doi: 10.1126/science.1228604
[24]
Conings B, Baeten L, De Dobbelaere C, et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv Mater, 2014, 26(13):2041 doi: 10.1002/adma.201304803
[25]
Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1(18):5628 doi: 10.1039/c3ta10518k
[26]
Xing G, Mathews N, Lim S S, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13(5):476 doi: 10.1038/nmat3911
[27]
Zhou Y, Zhu K. Perovskite solar cells shine in the "valley of the sun". ACS Energy Lett, 2016, 1(1):64 doi: 10.1021/acsenergylett.6b00069
[28]
Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156):344 doi: 10.1126/science.1243167
[29]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342:341 doi: 10.1126/science.1243982
[30]
Kim H S, Lee J W, Yantara N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett, 2013, 13(6):2412 doi: 10.1021/nl400286w
[31]
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8(7):506 doi: 10.1038/nphoton.2014.134
[32]
Heo J H, Song D H, Han H J, et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv Mater, 2015, 27(22):3424 doi: 10.1002/adma.v27.22
[33]
Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225):967 doi: 10.1126/science.aaa5760
[34]
Kim H S, Im S H, Park N G. Organolead halide perovskite:new horizons in solar cell research. J Phys Chem C, 2014, 118(11):5615 doi: 10.1021/jp409025w
[35]
Heo J H, Han H J, Kim D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci, 2015, 8(5):1602 doi: 10.1039/C5EE00120J
[36]
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104(6):063903 doi: 10.1063/1.4864778
[37]
Yin W J, Shi T T, Yan Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26(27):4653 doi: 10.1002/adma.v26.27
[38]
Du M H. Efficient carrier transport in halide perovskites:theoretical perspectives. J Mater Chem A, 2014, 2(24):9091 doi: 10.1039/c4ta01198h
[39]
Walsh A, Scanlon D O, Chen S, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie-International Edition, 2015, 54(6):1791 doi: 10.1002/anie.201409740
[40]
Agiorgousis M L, Sun Y Y, Zeng H, et al. Strong covalencyinduced recombination centers in perovskite solar cell material CH3NH3PbI3. J Am Chem Soc, 2014, 136(41):14570 doi: 10.1021/ja5079305
[41]
Buin A, Pietsch P, Xu J, et al. Materials processing routes to trapfree halide perovskites. Nano Lett, 2014, 14(11):6281 doi: 10.1021/nl502612m
[42]
Du M H. Density functional calculations of native defects in CH3NH3PbI3:effects of spin-orbit coupling and self-interaction error. J Phys Chem Lett, 2015, 6(8):1461 doi: 10.1021/acs.jpclett.5b00199
[43]
Wang Q, Shao Y, Xie H, et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett, 2014, 105(16):163508 doi: 10.1063/1.4899051
[44]
Chen S, Gong X G, Walsh A, et al. Crystal and electronic band structure of Cu2ZnSnX4(X=S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett, 2009, 94(4): 041903 doi: 10.1063/1.3074499
[45]
Ming W, Chen S, Du M H. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH3NH3PbI3. J Mater Chem A, 2016
[46]
Kim J, Lee S H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iIodide perovskite. J Phys Chem Lett, 2014, 5(8):1312 doi: 10.1021/jz500370k
[47]
Samiee M, Konduri S, Ganapathy B, et al. Defect density and dielectricconstantinperovskitesolarcells.ApplPhysLett, 2014, 105(15):153502
[48]
Jiang M L, Lan F, Zhao B X, et al. Observation of lower defect density in CH3NH3Pb(I, Cl)(3) solar cells by admittance spectroscopy. Appl Phys Lett, 2016, 108(24):243501 doi: 10.1063/1.4953834
[49]
Duan H S, Zhou H, Chen Q, et al. The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys Chem Chem Phys, 2015, 17(1):112 doi: 10.1039/C4CP04479G
[50]
Yang J H, Yin W J, Park J S, et al. Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Sci Rep, 2015, 5:16977 doi: 10.1038/srep16977
[51]
Edri E, Kirmayer S, Mukhopadhyay S, et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat Commun, 2014, 5:3461
[52]
Wehrenfennig C, Liu M, Snaith H J, et al. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx. Energy Environ Sci, 2014, 7(7):2269 doi: 10.1039/c4ee01358a
[53]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52(15):9019 doi: 10.1021/ic401215x
[54]
Heo J H, Song D H, Im S H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv Mater, 2014, 26(48):8179 doi: 10.1002/adma.201403140
[55]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221):519 doi: 10.1126/science.aaa2725
[56]
Takahashi Y, Obara R, Lin Z Z, et al. Charge-transport in tiniodide perovskite CH3NH3SnI3:origin of high conductivity. Dalton Trans, 2011, 40(20):5563 doi: 10.1039/c0dt01601b
[57]
Parrott E S, Milot R L, Stergiopoulos T, et al. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite. J Phys Chem Lett, 2016, 7(7):1321 doi: 10.1021/acs.jpclett.6b00322
[58]
Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc, 2015, 137(4):1530 doi: 10.1021/ja511132a
[59]
Jiao Y, Ma F, Gao G, et al. Graphene-covered perovskites:an effective strategy to enhance light absorption and resist moisture degradation. RSC Adv, 2015, 5(100):82346 doi: 10.1039/C5RA14381K
[60]
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9(2):1955 doi: 10.1021/nn506864k
[61]
Alberti A, Deretzis I, Pellegrino G, et al. Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum. Chem Phys Chem, 2015, 16(14):3064
[62]
Misra R K, Aharon S, Li B, et al. Temperature- and componentdependent degradation of perovskite photovoltaic materials under concentrated sunlight. J Phys Chem Lett, 2015, 6(3):326 doi: 10.1021/jz502642b
[63]
Han Y, Meyer S, Dkhissi Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A, 2015, 3(15):8139 doi: 10.1039/C5TA00358J
[64]
Kulbak M, Gupta S, Kedem N, et al. Cesium enhances longtermstabilityofleadbromideperovskite-basedsolarcells.JPhys Chem Lett, 2016, 7(1):167 doi: 10.1021/acs.jpclett.5b02597
[65]
Zhang Y Y, Chen S, Xu P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. arXiv:1506.01301v1, 2015
[66]
Chung I, Song J H, Im J, et al. CsSnI3:semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phasetransitions. J Am Chem Soc, 2012, 134(20):8579 doi: 10.1021/ja301539s
[67]
Xu P, Chen S, Xiang H J, et al. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem Mater, 2014, 26(20):6068 doi: 10.1021/cm503122j
[68]
Chen Z, Wang J J, Ren Y, et al. Schottky solar cells based on CsSnI3 thin-films. Appl Phys Lett, 2012, 101(9):093901 doi: 10.1063/1.4748888
Fig. 1.  (Color online) The calculated formation energy of intrinsic defects in α-MAPbI3 under three representative chemical conditions. (a) I-rich and Pb-poor. (b) moderate. (c) I-poor and Pb-rich. Reprinted with permission from Ref. [38].

Fig. 2.  The transition energy levels of 12 intrinsic defects: (a) acceptor defects and (b) donor defects. Reprinted with permission from Ref. [38].

Fig. 3.  (Color online) The structures around two Ii+ sites (a, b) and one I i- site (c). Only one Pb-I layer (parallel to the \textit{ab} plane) is shown, with the red and blue balls representing Pb and I atoms, respectively. Reprinted with permission from Ref. [42].

Fig. 4.  The calculated transition energy levels of V I, I i, I MA, Pb i, and Pb MA in β-MAPbI3 calculated using different levels of exchange-correlation functional approximations and spin-orbit coupling, including GGA-non-SOC, GGA-SOC, and HSE-SOC (α = 0. 43). Reprinted with permission from Ref. [42].

Fig. 5.  (Color online) The calculated formation energy of β-MAPbI3 under (a) I-rich and Pb-poor conditions, (b) I-poor and Pb-rich conditions. The red shading area denotes the concentration of defects with deep levels exceeding 1015cm-3 and the green shading area denotes the concentration of defects with deep levels below 1015cm-3. Reprinted with permission from Ref. [44]. Note that the symbols of the anti-site defects in Ref. [44] are different from those in other papers[38, 42, 45-47] which adopted the standard Kröger-Vink notation, with IPb representing I replacing Pb, but here IPb representing I substituted by Pb.

Fig. 6.  (Color online) Structures before the SA relaxation (shaded) and after SA relaxation (not shaded) for V I, Pb i and I MA. (a) A Pb-Pb dimer forms near the I vacancy after relaxation. (b) A Pb-Pb dimer forms near Pb interstitial. (c) An I-I-I trimer forms when MA is replaced by I. Reprinted with permission from Ref. [45].

Fig. 7.  (Color online) Formation energy as a function of Fermi level of four defects with deep transition energy levels under different chemical potential conditions. Reprinted with permission from Ref. [45].

Fig. 8.  The transition energy levels of 12 intrinsic defects. Blue lines represent (0/-) transition energy levels and brown lines represent (+/0) transition energy levels. Bold lines means they are deep levels. Reprinted with permission from Refs. [45, 47].

Fig. 9.  (Color online) Formation energy as a function of Fermi level of the vacancy defects and band-edge defects under different chemical potential conditions at T= 300 K. Reprinted with permission from Ref. [52].

Fig. 10.  Formation energies of intrinsic defects except vacancies (due to their shallow nature). Reprinted with permission from Ref. [56].

Fig. 11.  (Color online) The stable chemical potential region of single-phase CsSnI3. Reprinted with permission from Ref. [69].

Fig. 12.  (Color online) Formation energies as a function of Fermi energy of intrinsic defects in CsSnI3 under two different chemical conditions, A (Sn-rich) and D (Sn-poor). Reprinted with permission from Ref. [69].

Fig. 13.  (Color online) Transition energy levels of intrinsic defects in CsSnI3. Reprinted with permission from Ref. [69].

[1]
Zhao J H, Wang A H, Green M A, et al. 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells. Appl Phys Lett, 1998, 73(14):1991 https://www.researchgate.net/publication/234972975_Novel_198_efficient_honeycomb_textured_multicrystalline_and_244_monocrystalline_silicon_solar_cells_Appl_Phys_Lett?_sg=UcMWhKnOp1AyClfTG-dOjAZtnBLfmAvKmaqj683rnktg0JQt_8GGrDRy02zspeegSPwePiPsJxNRXdGygozvMA
[2]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovoltaics, 2015, 23(1):1 doi: 10.1002/pip.v23.1
[3]
Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovoltaics, 2013, 3(4):1184 doi: 10.1109/JPHOTOV.2013.2270351
[4]
Smith D D, Cousins P J, Masad A, et al. Generation III high efficiency lower cost technology:transition to full scale manufacturing. 2012 IEEE 38th Photovoltaic Specialists Conference, 2012:001594 http://cn.bing.com/academic/profile?id=d54d3dc7bab26b3d9573a3754734408f&encoded=0&v=paper_preview&mkt=zh-cn
[5]
Polman A, Knight M, Garnett E C, et al. Photovoltaic materials:Present efficiencies and future challenges. Science, 2016, 352(6283):307 http://cn.bing.com/academic/profile?id=2566ee25e2375841f14f093c90d3bc19&encoded=0&v=paper_preview&mkt=zh-cn
[6]
Kayes B M, Hui N, Twist R, et al. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 201137th IEEE Photovoltaic Specialists Conference, 2011:000004 https://www.researchgate.net/publication/261038160_276_Conversion_efficiency_a_new_record_for_single-junction_solar_cells_under_1_sun_illumination
[7]
King R R, Law D C, Edmondson K M, et al. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl Phys Lett, 2007, 90(18):183516 doi: 10.1063/1.2734507
[8]
Geisz J F, Kurtz S, Wanlass M W, et al. High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction. Appl Phys Lett, 2007, 91(2):023502 doi: 10.1063/1.2753729
[9]
Ma J, Kuciauskas D, Albin D, et al. Dependence of the minoritycarrier lifetime on the stoichiometry of CdTe using time-resolved photoluminescence and first-principles calculations. Phys Rev Lett, 2013, 111(6):067402 doi: 10.1103/PhysRevLett.111.067402
[10]
Wei S H, Zhang S. Chemical trends of defect formation and doping limit in II-VI semiconductors:the case of CdTe. Phys Rev B, 2002, 66:155211 doi: 10.1103/PhysRevB.66.155211
[11]
Todorov T K, Reuter K B, Mitzi D B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater, 2010, 22(20):E156 doi: 10.1002/adma.200904155
[12]
Wei W, Winkler M T, Gunawan O, et al. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv Energy Mater, 2014, 4(7):1301465 doi: 10.1002/aenm.201301465
[13]
Zhang S B, Wei S H, Zunger A, et al. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B, 1998, 57(16):9642 doi: 10.1103/PhysRevB.57.9642
[14]
Huang B, Chen S, Deng H X, et al. Origin of reduced efficiency in Cu(In, Ga)Se2 solar cells with high Ga concentration:Alloy solubility versus intrinsic defects. IEEE J Photovoltaics, 2014, 4(1):477 doi: 10.1109/JPHOTOV.2013.2285617
[15]
Tanaka K, Oonuki M, Moritake N, et al. Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing. Sol Energy Mater Sol Cells, 2009, 93(5):583 doi: 10.1016/j.solmat.2008.12.009
[16]
Weber A, Schmidt S, Abou-Ras D, et al. Texture inheritance in thin-film growth of Cu2ZnSnS4. Appl Phys Lett, 2009, 95(4):041904 doi: 10.1063/1.3192357
[17]
Lin X, Ennaoui A, Levcenko S, et al. Defect study of Cu2ZnSn(SxSe1-x)(4) thin film absorbers using photoluminescence and modulated surface photovoltage spectroscopy. Appl Phys Lett, 2015, 106(1):013903 doi: 10.1063/1.4905311
[18]
Cui H, Liu X, Liu F, et al. Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact. Appl Phys Lett, 2014, 104(4):041115 doi: 10.1063/1.4863951
[19]
Kim J, Hiroi H, Todorov T K, et al. High efficiency Cu2ZnSn(S, Se)(4) solar cells by applying a double In2S3/CdS emitter. Adv Mater, 2014, 26(44):7427 doi: 10.1002/adma.201402373
[20]
Gunawan O, Todorov T K, Mitzi D B. Loss mechanisms in hydrazine-processed Cu2ZnSn(S, Se)(4) solar cells. Appl Phys Lett, 2010, 97(23):233506 doi: 10.1063/1.3522884
[21]
Etgar L, Gao P, Xue Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J Am Chem Soc, 2012, 134(42):17396 doi: 10.1021/ja307789s
[22]
Chung I, Lee B, He J, et al. All-solid-state dye-sensitized solar cells with high efficiency. Nature, 2012, 485(7399):486 doi: 10.1038/nature11067
[23]
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012, 338(6107):643 doi: 10.1126/science.1228604
[24]
Conings B, Baeten L, De Dobbelaere C, et al. Perovskite-based hybrid solar cells exceeding 10% efficiency with high reproducibility using a thin film sandwich approach. Adv Mater, 2014, 26(13):2041 doi: 10.1002/adma.201304803
[25]
Baikie T, Fang Y, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1(18):5628 doi: 10.1039/c3ta10518k
[26]
Xing G, Mathews N, Lim S S, et al. Low-temperature solutionprocessed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13(5):476 doi: 10.1038/nmat3911
[27]
Zhou Y, Zhu K. Perovskite solar cells shine in the "valley of the sun". ACS Energy Lett, 2016, 1(1):64 doi: 10.1021/acsenergylett.6b00069
[28]
Xing G, Mathews N, Sun S, et al. Long-range balanced electronand hole-transport lengths in organic-inorganic CH3NH3PbI3. Science, 2013, 342(6156):344 doi: 10.1126/science.1243167
[29]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342:341 doi: 10.1126/science.1243982
[30]
Kim H S, Lee J W, Yantara N, et al. High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett, 2013, 13(6):2412 doi: 10.1021/nl400286w
[31]
Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells. Nat Photonics, 2014, 8(7):506 doi: 10.1038/nphoton.2014.134
[32]
Heo J H, Song D H, Han H J, et al. Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate. Adv Mater, 2015, 27(22):3424 doi: 10.1002/adma.v27.22
[33]
Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths >175μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225):967 doi: 10.1126/science.aaa5760
[34]
Kim H S, Im S H, Park N G. Organolead halide perovskite:new horizons in solar cell research. J Phys Chem C, 2014, 118(11):5615 doi: 10.1021/jp409025w
[35]
Heo J H, Han H J, Kim D, et al. Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci, 2015, 8(5):1602 doi: 10.1039/C5EE00120J
[36]
Yin W J, Shi T T, Yan Y F. Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett, 2014, 104(6):063903 doi: 10.1063/1.4864778
[37]
Yin W J, Shi T T, Yan Y F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater, 2014, 26(27):4653 doi: 10.1002/adma.v26.27
[38]
Du M H. Efficient carrier transport in halide perovskites:theoretical perspectives. J Mater Chem A, 2014, 2(24):9091 doi: 10.1039/c4ta01198h
[39]
Walsh A, Scanlon D O, Chen S, et al. Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angewandte Chemie-International Edition, 2015, 54(6):1791 doi: 10.1002/anie.201409740
[40]
Agiorgousis M L, Sun Y Y, Zeng H, et al. Strong covalencyinduced recombination centers in perovskite solar cell material CH3NH3PbI3. J Am Chem Soc, 2014, 136(41):14570 doi: 10.1021/ja5079305
[41]
Buin A, Pietsch P, Xu J, et al. Materials processing routes to trapfree halide perovskites. Nano Lett, 2014, 14(11):6281 doi: 10.1021/nl502612m
[42]
Du M H. Density functional calculations of native defects in CH3NH3PbI3:effects of spin-orbit coupling and self-interaction error. J Phys Chem Lett, 2015, 6(8):1461 doi: 10.1021/acs.jpclett.5b00199
[43]
Wang Q, Shao Y, Xie H, et al. Qualifying composition dependent p and n self-doping in CH3NH3PbI3. Appl Phys Lett, 2014, 105(16):163508 doi: 10.1063/1.4899051
[44]
Chen S, Gong X G, Walsh A, et al. Crystal and electronic band structure of Cu2ZnSnX4(X=S and Se) photovoltaic absorbers: first-principles insights. Appl Phys Lett, 2009, 94(4): 041903 doi: 10.1063/1.3074499
[45]
Ming W, Chen S, Du M H. Chemical instability leads to unusual chemical-potential-independent defect formation and diffusion in perovskite solar cell material CH3NH3PbI3. J Mater Chem A, 2016
[46]
Kim J, Lee S H, Lee J H, et al. The role of intrinsic defects in methylammonium lead iIodide perovskite. J Phys Chem Lett, 2014, 5(8):1312 doi: 10.1021/jz500370k
[47]
Samiee M, Konduri S, Ganapathy B, et al. Defect density and dielectricconstantinperovskitesolarcells.ApplPhysLett, 2014, 105(15):153502
[48]
Jiang M L, Lan F, Zhao B X, et al. Observation of lower defect density in CH3NH3Pb(I, Cl)(3) solar cells by admittance spectroscopy. Appl Phys Lett, 2016, 108(24):243501 doi: 10.1063/1.4953834
[49]
Duan H S, Zhou H, Chen Q, et al. The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys Chem Chem Phys, 2015, 17(1):112 doi: 10.1039/C4CP04479G
[50]
Yang J H, Yin W J, Park J S, et al. Self-regulation of charged defect compensation and formation energy pinning in semiconductors. Sci Rep, 2015, 5:16977 doi: 10.1038/srep16977
[51]
Edri E, Kirmayer S, Mukhopadhyay S, et al. Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3-xClx perovskite solar cells. Nat Commun, 2014, 5:3461
[52]
Wehrenfennig C, Liu M, Snaith H J, et al. Charge-carrier dynamics in vapour-deposited films of the organolead halide perovskite CH3NH3PbI3-xClx. Energy Environ Sci, 2014, 7(7):2269 doi: 10.1039/c4ee01358a
[53]
Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations:phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem, 2013, 52(15):9019 doi: 10.1021/ic401215x
[54]
Heo J H, Song D H, Im S H. Planar CH3NH3PbBr3 hybrid solar cells with 10.4% power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv Mater, 2014, 26(48):8179 doi: 10.1002/adma.201403140
[55]
Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221):519 doi: 10.1126/science.aaa2725
[56]
Takahashi Y, Obara R, Lin Z Z, et al. Charge-transport in tiniodide perovskite CH3NH3SnI3:origin of high conductivity. Dalton Trans, 2011, 40(20):5563 doi: 10.1039/c0dt01601b
[57]
Parrott E S, Milot R L, Stergiopoulos T, et al. Effect of structural phase transition on charge-carrier lifetimes and defects in CH3NH3SnI3 perovskite. J Phys Chem Lett, 2016, 7(7):1321 doi: 10.1021/acs.jpclett.6b00322
[58]
Christians J A, Miranda Herrera P A, Kamat P V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J Am Chem Soc, 2015, 137(4):1530 doi: 10.1021/ja511132a
[59]
Jiao Y, Ma F, Gao G, et al. Graphene-covered perovskites:an effective strategy to enhance light absorption and resist moisture degradation. RSC Adv, 2015, 5(100):82346 doi: 10.1039/C5RA14381K
[60]
Yang J, Siempelkamp B D, Liu D, et al. Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano, 2015, 9(2):1955 doi: 10.1021/nn506864k
[61]
Alberti A, Deretzis I, Pellegrino G, et al. Similar structural dynamics for the degradation of CH3NH3PbI3 in air and in vacuum. Chem Phys Chem, 2015, 16(14):3064
[62]
Misra R K, Aharon S, Li B, et al. Temperature- and componentdependent degradation of perovskite photovoltaic materials under concentrated sunlight. J Phys Chem Lett, 2015, 6(3):326 doi: 10.1021/jz502642b
[63]
Han Y, Meyer S, Dkhissi Y, et al. Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J Mater Chem A, 2015, 3(15):8139 doi: 10.1039/C5TA00358J
[64]
Kulbak M, Gupta S, Kedem N, et al. Cesium enhances longtermstabilityofleadbromideperovskite-basedsolarcells.JPhys Chem Lett, 2016, 7(1):167 doi: 10.1021/acs.jpclett.5b02597
[65]
Zhang Y Y, Chen S, Xu P, et al. Intrinsic instability of the hybrid halide perovskite semiconductor CH3NH3PbI3. arXiv:1506.01301v1, 2015
[66]
Chung I, Song J H, Im J, et al. CsSnI3:semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phasetransitions. J Am Chem Soc, 2012, 134(20):8579 doi: 10.1021/ja301539s
[67]
Xu P, Chen S, Xiang H J, et al. Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnI3. Chem Mater, 2014, 26(20):6068 doi: 10.1021/cm503122j
[68]
Chen Z, Wang J J, Ren Y, et al. Schottky solar cells based on CsSnI3 thin-films. Appl Phys Lett, 2012, 101(9):093901 doi: 10.1063/1.4748888
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 5423 Times PDF downloads: 96 Times Cited by: 0 Times

    History

    Received: 23 August 2016 Revised: 26 October 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006 D Han, C M Dai, S Y Chen. Calculation studies on point defects in perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006.Export: BibTex EndNote
      Citation:
      Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells[J]. Journal of Semiconductors, 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

      D Han, C M Dai, S Y Chen. Calculation studies on point defects in perovskite solar cells[J]. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006.
      Export: BibTex EndNote

      Calculation studies on point defects in perovskite solar cells

      doi: 10.1088/1674-4926/38/1/011006
      Funds:

      the Shu-Guang Program 15SG20

      the Shanghai Rising-Star Program 14QA1401500

      the CC of ECNU 

      the National Natural Science Foundation of China 61574059

      Project supported by the National Natural Science Foundation of China (No. 61574059), the Shanghai Rising-Star Program (No.14QA1401500), the Shu-Guang Program (15SG20), and the CC of ECNU

      More Information
      • Corresponding author: Shiyou Chen, Email:chensy@ee.ecnu.edu.cn
      • Received Date: 2016-08-23
      • Revised Date: 2016-10-26
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return