SPECIAL TOPIC ON PEROVSKITE SOLAR CELLS

The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature

Dong Wang, Yue Chang, Shuping Pang and Guanglei Cui

+ Author Affiliations

 Corresponding author: Shuping Pang, Email:pangsp@qibebt.ac.cn; Guanglei Cui, Email:cuigl@qust.edu.cn

PDF

Abstract: The fast developing perovskite solar cells shows high efficiency and low cost. However, the stability problem restricts perovskite from commercial use. In this work, we have studied the effect of grain orientation on the morphological stability of perovskite thin films. By tuning the inorganic/organic ratio in the precursor solution, perovskite thin films with both high crystallinity and good morphological stability have been fabricated. The thermal stability of perovskite solar cells based on the optimized films has been tested. The device performance shows no degradation after annealing at 100℃ for 5 h in air. This finding provides general guidelines for the development of thermally stable perovskite solar cells.

Key words: perovskite solar cellsmorphological stabilitygrain orientation



[1]
Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7(8):2518 doi: 10.1039/C4EE00673A
[2]
Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, n/a-n/a
[3]
Boix P P, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today, 2014, 17(1):16 doi: 10.1016/j.mattod.2013.12.002
[4]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156):341 doi: 10.1126/science.1243982
[5]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovoltaics:Res Appl, 2015, 23(1):1 doi: 10.1002/pip.v23.1
[6]
Lungenschmied C, Dennler G, Neugebauer H, et al. Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells, 2007, 91(5):379 doi: 10.1016/j.solmat.2006.10.013
[7]
Krebs F C, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2010, 2(6):873 doi: 10.1039/b9nr00430k
[8]
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10):4088 doi: 10.1039/c1nr10867k
[9]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2:591 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_iodide_perovskite_sensitized_all-solid-state_submicron_thin_film_mesoscopic_solar_cell_with_efficiency_exceeding_9/links/09e41506f09cb81b07000000.pdf
[10]
Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1(18):5628 doi: 10.1039/c3ta10518k
[11]
Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater, 2014, 24:3250 doi: 10.1002/adfm.201304022
[12]
Eperon G E, Burlakov V M, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24(1):151 doi: 10.1002/adfm.v24.1
[13]
Aberle A, Dubey S, Sarvaiya J N, et al. Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world-a review. Energy Procedia, 2013, 33:311 doi: 10.1016/j.egypro.2013.05.072
[14]
Wang Y, Sumpter B G, Huang J S, et al. density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3. J Phys Chem C, 2015, 119(2):1136 doi: 10.1021/jp511123s
[15]
Persson I, Lyczko K, Lundberg D, et al. Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state. Inorg Chem, 2011, 50(3):1058 doi: 10.1021/ic1017714
[16]
Zhou H P, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196):542 doi: 10.1126/science.1254050
[17]
Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118(18):9412 doi: 10.1021/jp502696w
[18]
Wang D, Liu Z H, Zhou Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors. Chem Mater, 2014, 26(24):7145 doi: 10.1021/cm5037869
[19]
Xiao Z G, Wang D, Dong Q F, et al. Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy Environ Sci, 2016, 9(3):867 doi: 10.1039/C6EE00183A
[20]
Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225):967 doi: 10.1126/science.aaa5760
[21]
Tress W, Marinova N, Inganäs O, et al. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra:the role of radiative and non-radiative recombination. Adv Energy Mater, 2015, 5(3):1400812 doi: 10.1002/aenm.201400812
[22]
Chen B, Yang M J, Priya S, et al. Origin of J-V hysteresis in perovskite solar cells. J Am Chem Soc, 2016 7(5):905 http://cn.bing.com/academic/profile?id=44a0248e691e78ee3bd60b5dd64e3e0d&encoded=0&v=paper_preview&mkt=zh-cn
Fig. 1.  Morphology evolution of perovskite films based on mixed lead precursor with different inorganic/organic ratio: (a) 1 : 1, (b) 1 : 1. 3, (c) 1 : 1. 7, (d) 1 : 2, (e) 1 : 2. 3, (f) 1 : 3. The inorganic/organic ratio gradually decreased from (a) to (f).

Fig. 2.  Morphology evolution of perovskite films based on mixed lead precursor after 5 h annealing. (a)-(f) were the same sample as in Fig. 1.

Fig. 3.  XRD evolution of perovskite films based on mixed lead precursors, annealed for (a) 1 h and (b) 5 h.

Fig. 4.  UV absorbance of different perovskite samples at 450 and 700 nm wavelength, annealed for 1 and 5 h, respectively.

Fig. 5.  (Color online) Photoluminescence of perovskite films based on mixed lead precursor.

Fig. 6.  (Color online) J-V curves of perovskite solar cells based on mixed lead precursor.

Fig. 7.  (Color online) (a) Influence of morphological stability of perovskite films on device performance. (b) Thermal stability of perovskite devices based on sample 114.

Table 1.   The relationship between inorganic/organic ratio and mixed lead precursor.

Sample a b c d e f
Inorganic/organic 1:1 1:1.3 1:1.71:2 1:2.31:3
PbI2 : PbCl2 : MAI1:0:16:1:92:1:51:1:41:2:70:1:3
DownLoad: CSV

Table 2.   Detailed parameter extracted from Fig. 6.

SampleVoc (V)Jsc (mA/cm2FF (%)Eff (%)
11 0. 71 12. 4 34 3. 0
619 0. 7 13. 8 48 4. 8
215 0. 91 18. 4 64 10. 7
114 0. 94 19. 3 70 12. 9
127 0. 9 18. 861 9. 5
13 0. 79 16. 1 58 7. 4
DownLoad: CSV
[1]
Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics. Energy Environ Sci, 2014, 7(8):2518 doi: 10.1039/C4EE00673A
[2]
Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, n/a-n/a
[3]
Boix P P, Nonomura K, Mathews N, et al. Current progress and future perspectives for organic/inorganic perovskite solar cells. Mater Today, 2014, 17(1):16 doi: 10.1016/j.mattod.2013.12.002
[4]
Stranks S D, Eperon G E, Grancini G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342(6156):341 doi: 10.1126/science.1243982
[5]
Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (Version 45). Prog Photovoltaics:Res Appl, 2015, 23(1):1 doi: 10.1002/pip.v23.1
[6]
Lungenschmied C, Dennler G, Neugebauer H, et al. Flexible, long-lived, large-area, organic solar cells. Sol Energy Mater Sol Cells, 2007, 91(5):379 doi: 10.1016/j.solmat.2006.10.013
[7]
Krebs F C, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale, 2010, 2(6):873 doi: 10.1039/b9nr00430k
[8]
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3(10):4088 doi: 10.1039/c1nr10867k
[9]
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep, 2012, 2:591 https://www.researchgate.net/profile/Jacques-E_Moser/publication/230716542_Lead_iodide_perovskite_sensitized_all-solid-state_submicron_thin_film_mesoscopic_solar_cell_with_efficiency_exceeding_9/links/09e41506f09cb81b07000000.pdf
[10]
Baikie T, Fang Y N, Kadro J M, et al. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J Mater Chem A, 2013, 1(18):5628 doi: 10.1039/c3ta10518k
[11]
Dualeh A, Tétreault N, Moehl T, et al. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells. Adv Funct Mater, 2014, 24:3250 doi: 10.1002/adfm.201304022
[12]
Eperon G E, Burlakov V M, Docampo P, et al. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv Funct Mater, 2014, 24(1):151 doi: 10.1002/adfm.v24.1
[13]
Aberle A, Dubey S, Sarvaiya J N, et al. Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world-a review. Energy Procedia, 2013, 33:311 doi: 10.1016/j.egypro.2013.05.072
[14]
Wang Y, Sumpter B G, Huang J S, et al. density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3. J Phys Chem C, 2015, 119(2):1136 doi: 10.1021/jp511123s
[15]
Persson I, Lyczko K, Lundberg D, et al. Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state. Inorg Chem, 2011, 50(3):1058 doi: 10.1021/ic1017714
[16]
Zhou H P, Chen Q, Li G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014, 345(6196):542 doi: 10.1126/science.1254050
[17]
Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J Phys Chem C, 2014, 118(18):9412 doi: 10.1021/jp502696w
[18]
Wang D, Liu Z H, Zhou Z M, et al. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors. Chem Mater, 2014, 26(24):7145 doi: 10.1021/cm5037869
[19]
Xiao Z G, Wang D, Dong Q F, et al. Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells. Energy Environ Sci, 2016, 9(3):867 doi: 10.1039/C6EE00183A
[20]
Dong Q, Fang Y, Shao Y, et al. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225):967 doi: 10.1126/science.aaa5760
[21]
Tress W, Marinova N, Inganäs O, et al. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra:the role of radiative and non-radiative recombination. Adv Energy Mater, 2015, 5(3):1400812 doi: 10.1002/aenm.201400812
[22]
Chen B, Yang M J, Priya S, et al. Origin of J-V hysteresis in perovskite solar cells. J Am Chem Soc, 2016 7(5):905 http://cn.bing.com/academic/profile?id=44a0248e691e78ee3bd60b5dd64e3e0d&encoded=0&v=paper_preview&mkt=zh-cn
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3730 Times PDF downloads: 38 Times Cited by: 0 Times

    History

    Received: 23 August 2016 Revised: 11 October 2016 Online: Published: 01 January 2017

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature[J]. Journal of Semiconductors, 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002 D Wang, Y Chang, S P Pang, G L Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature[J]. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002.Export: BibTex EndNote
      Citation:
      Dong Wang, Yue Chang, Shuping Pang, Guanglei Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature[J]. Journal of Semiconductors, 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002

      D Wang, Y Chang, S P Pang, G L Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature[J]. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002.
      Export: BibTex EndNote

      The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature

      doi: 10.1088/1674-4926/38/1/014002
      Funds:

      Project supported by the Youth Innovation Promotion Association of CAS (No. 2015167)

      the Youth Innovation Promotion Association of CAS 2015167

      More Information
      • Corresponding author: Shuping Pang, Email:pangsp@qibebt.ac.cn; Guanglei Cui, Email:cuigl@qust.edu.cn
      • Received Date: 2016-08-23
      • Revised Date: 2016-10-11
      • Published Date: 2017-01-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return